Zipkin and Prometheus Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.
The Prometheus Output Plugin enables Telegraf to expose metrics at an HTTP endpoint for scraping by a Prometheus server. This integration allows users to collect and aggregate metrics from various sources in a format that Prometheus can process efficiently.
Integration details
Zipkin
This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.
Prometheus
This plugin for facilitates the integration with Prometheus, a well-known open-source monitoring and alerting toolkit designed for reliability and efficiency in large-scale environments. By working as a Prometheus client, it allows users to expose a defined set of metrics via an HTTP server that Prometheus can scrape at specified intervals. This plugin plays a crucial role in monitoring diverse systems by allowing them to publish performance metrics in a standardized format, enabling extensive visibility into system health and behavior. Key features include support for configuring various endpoints, enabling TLS for secure communication, and options for HTTP basic authentication. The plugin also integrates seamlessly with global Telegraf configuration settings, supporting extensive customization to fit specific monitoring needs. This promotes interoperability in environments where different systems must communicate performance data effectively. Leveraging Prometheus’s metric format, it allows for flexible metric management through advanced configurations such as metric expiration and collectors control, offering a sophisticated solution for monitoring and alerting workflows.
Configuration
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
Prometheus
[[outputs.prometheus_client]]
## Address to listen on.
## ex:
## listen = ":9273"
## listen = "vsock://:9273"
listen = ":9273"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
## Valid options: 1, 2
# metric_version = 1
## Use HTTP Basic Authentication.
# basic_username = "Foo"
# basic_password = "Bar"
## If set, the IP Ranges which are allowed to access metrics.
## ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
# ip_range = []
## Path to publish the metrics on.
# path = "/metrics"
## Expiration interval for each metric. 0 == no expiration
# expiration_interval = "60s"
## Collectors to enable, valid entries are "gocollector" and "process".
## If unset, both are enabled.
# collectors_exclude = ["gocollector", "process"]
## Send string metrics as Prometheus labels.
## Unless set to false all string metrics will be sent as labels.
# string_as_label = true
## If set, enable TLS with the given certificate.
# tls_cert = "/etc/ssl/telegraf.crt"
# tls_key = "/etc/ssl/telegraf.key"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Export metric collection time.
# export_timestamp = false
## Specify the metric type explicitly.
## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
# [outputs.prometheus_client.metric_types]
# counter = []
# gauge = []
Input and output integration examples
Zipkin
-
Latency Monitoring in Microservices: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.
-
Performance Optimization in Essential Services: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.
-
Dynamic Service Dependency Mapping: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.
-
Anomaly Detection in Service Latency: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.
Prometheus
-
Monitoring Multi-cloud Deployments: Utilize the Prometheus plugin to collect metrics from applications running across multiple cloud providers. This scenario allows teams to centralize monitoring through a single Prometheus instance that scrapes metrics from different environments, providing a unified view of performance metrics across hybrid infrastructures. It streamlines reporting and alerting, enhancing operational efficiency without needing complex integrations.
-
Enhancing Microservices Visibility: Implement the plugin to expose metrics from various microservices within a Kubernetes cluster. Using Prometheus, teams can visualize service metrics in real time, identify bottlenecks, and maintain system health checks. This setup supports adaptive scaling and resource utilization optimization based on insights generated from the collected metrics. It enhances the ability to troubleshoot service interactions, significantly improving the resilience of the microservice architecture.
-
Real-time Anomaly Detection in E-commerce: By leveraging this plugin alongside Prometheus, an e-commerce platform can monitor key performance indicators such as response times and error rates. Integrating anomaly detection algorithms with scraped metrics allows the identification of unexpected patterns indicating potential issues, such as sudden traffic spikes or backend service failure. This proactive monitoring empowers business continuity and operational efficiency, minimizing potential downtimes while ensuring service reliability.
-
Performance Metrics Reporting for APIs: Utilize the Prometheus Output Plugin to gather and report API performance metrics, which can then be visualized in Grafana dashboards. This use case enables detailed analysis of API response times, throughput, and error rates, promoting continuous improvement of API services. By closely monitoring these metrics, teams can quickly react to degradation, ensuring optimal API performance and maintaining a high level of service availability.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration