Zipkin and New Relic Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.
This plugin allows the sending of metrics to New Relic Insights using the Metrics API, enabling effective monitoring and analysis of application performance.
Integration details
Zipkin
This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.
New Relic
This plugin writes metrics to New Relic Insights utilizing the Metrics API, which provides a robust mechanism for sending time series data to the New Relic platform. Users must first obtain an Insights API Key to authenticate and authorize their data submissions. The plugin is designed to facilitate easy integration with New Relic’s monitoring and analytics capabilities, supporting a variety of metric types and allowing for efficient data handling. Core features include the ability to add prefixes to metrics for better identification, customizable timeouts for API requests, and support for proxy settings to enhance connectivity. It is essential for users to configure these options according to their requirements, enabling seamless data flow into New Relic for comprehensive real-time analytics and insights.
Configuration
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
New Relic
[[outputs.newrelic]]
## The 'insights_key' parameter requires a NR license key.
## New Relic recommends you create one
## with a convenient name such as TELEGRAF_INSERT_KEY.
## reference: https://docs.newrelic.com/docs/apis/intro-apis/new-relic-api-keys/#ingest-license-key
# insights_key = "New Relic License Key Here"
## Prefix to add to add to metric name for easy identification.
## This is very useful if your metric names are ambiguous.
# metric_prefix = ""
## Timeout for writes to the New Relic API.
# timeout = "15s"
## HTTP Proxy override. If unset use values from the standard
## proxy environment variables to determine proxy, if any.
# http_proxy = "http://corporate.proxy:3128"
## Metric URL override to enable geographic location endpoints.
# If not set use values from the standard
# metric_url = "https://metric-api.newrelic.com/metric/v1"
Input and output integration examples
Zipkin
-
Latency Monitoring in Microservices: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.
-
Performance Optimization in Essential Services: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.
-
Dynamic Service Dependency Mapping: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.
-
Anomaly Detection in Service Latency: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.
New Relic
-
Application Performance Monitoring: Use the New Relic Telegraf plugin to send application performance metrics from a web service to New Relic Insights. By integrating this plugin, developers can collect data such as response times, error rates, and throughput, enabling teams to monitor application health in real-time and resolve issues quickly before they impact users. This setup promotes proactive management of application performance and user experience.
-
Infrastructure Metrics Aggregation: Leverage this plugin to aggregate and send system-level metrics (CPU usage, memory consumption, etc.) from various servers to New Relic. This helps system administrators maintain an comprehensive view of infrastructure performance, facilitating capacity planning and identifying potential bottlenecks. By centralizing metrics in New Relic, teams can visualize trends over time and make informed decisions regarding resource allocation.
-
Dynamic Metric Naming for Multi-tenant Applications: Implement dynamic prefixing with the metric_prefix option to differentiate between different tenants in a multi-tenant application. By configuring the plugin to include a unique identifier per tenant in the metric names, teams can analyze usage patterns and performance metrics per tenant. This provides valuable insights into tenant behavior, supporting tailored optimizations and enhancing service quality across different customer segments.
-
Real-time Anomaly Detection: Combine the New Relic plugin with alerting mechanisms to trigger notifications based on unusual metric patterns. By sending metrics such as request counts and response times, teams can set thresholds in New Relic that, when breached, will automatically alert responsible parties. This user-driven approach supports immediate responses to potential issues before they escalate into larger incidents.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration