Zipkin and Grafana Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.
This plugin enables Telegraf to stream metrics directly to Grafana dashboards in real-time, leveraging Grafana Live for instantaneous data visualization and operational insights.
Integration details
Zipkin
This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.
Grafana
Telegraf can be used to send real-time data to Grafana using the Websocket output plugin. Metrics collected by Telegraf are instantly pushed to Grafana dashboards, enabling real-time visualization and analysis. This plugin is ideal for use cases where low latency, live data visualization is essential, such as operational monitoring, real-time analytics, and immediate incident response scenarios. It supports authentication headers, customizable data serialization formats (like JSON), and secure communication via TLS, offering flexibility and ease of integration in dynamic, interactive dashboard environments.
Configuration
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
Grafana
[[outputs.websocket]]
## Grafana Live WebSocket endpoint
url = "ws://localhost:3000/api/live/push/custom_id"
## Optional headers for authentication
# [outputs.websocket.headers]
# Authorization = "Bearer YOUR_GRAFANA_API_TOKEN"
## Data format to send metrics
data_format = "influx"
## Timeouts (make sure read_timeout is larger than server ping interval or set to zero).
# connect_timeout = "30s"
# write_timeout = "30s"
# read_timeout = "30s"
## Optionally turn on using text data frames (binary by default).
# use_text_frames = false
## TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Zipkin
-
Latency Monitoring in Microservices: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.
-
Performance Optimization in Essential Services: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.
-
Dynamic Service Dependency Mapping: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.
-
Anomaly Detection in Service Latency: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.
Grafana
-
Real-Time Infrastructure Dashboards: Deploy Telegraf to stream server health metrics directly to Grafana dashboards, enabling IT teams to visualize infrastructure performance in real-time. This setup allows immediate detection and response to critical system events.
-
Interactive IoT Monitoring: Integrate IoT device metrics collected by Telegraf and push live data into Grafana, creating dynamic and interactive dashboards for monitoring smart city projects or manufacturing processes. This real-time visibility significantly enhances responsiveness and operational efficiency.
-
Instantaneous Application Performance Analysis: Stream application metrics in real-time from production environments into Grafana dashboards, enabling development teams to rapidly detect and diagnose performance bottlenecks or anomalies during deployments, minimizing downtime and improving reliability.
-
Live Event Analytics: Utilize Telegraf to capture and stream real-time audience or system metrics during major live events directly into Grafana dashboards. Event organizers can dynamically monitor and react to changing conditions or trends, significantly enhancing audience engagement and operational decision-making.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration