Zipkin and Google BigQuery Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.
The Google BigQuery plugin allows Telegraf to write metrics to Google Cloud BigQuery, enabling robust data analytics capabilities for telemetry data.
Integration details
Zipkin
This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.
Google BigQuery
The Google BigQuery plugin for Telegraf enables seamless integration with Google Cloud’s BigQuery service, a popular data warehousing and analytics platform. This plugin facilitates the transfer of metrics collected by Telegraf into BigQuery datasets, making it easier for users to perform analyses and generate insights from their telemetry data. It requires authentication through a service account or user credentials and is designed to handle various data types, ensuring that users can maintain the integrity and accuracy of their metrics as they are stored in BigQuery tables. The configuration options allow for customization around dataset specifications and handling metrics, including the management of hyphens in metric names, which are not supported by BigQuery for streaming inserts. This plugin is particularly useful for organizations leveraging the scalability and powerful query capabilities of BigQuery to analyze large volumes of monitoring data.
Configuration
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
Google BigQuery
# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
## Credentials File
credentials_file = "/path/to/service/account/key.json"
## Google Cloud Platform Project
# project = ""
## The namespace for the metric descriptor
dataset = "telegraf"
## Timeout for BigQuery operations.
# timeout = "5s"
## Character to replace hyphens on Metric name
# replace_hyphen_to = "_"
## Write all metrics in a single compact table
# compact_table = ""
Input and output integration examples
Zipkin
-
Latency Monitoring in Microservices: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.
-
Performance Optimization in Essential Services: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.
-
Dynamic Service Dependency Mapping: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.
-
Anomaly Detection in Service Latency: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.
Google BigQuery
-
Real-Time Analytics Dashboard: Leverage the Google BigQuery plugin to feed live metrics into a custom analytics dashboard hosted on Google Cloud. This setup would allow teams to visualize performance data in real-time, providing insights into system health and usage patterns. By using BigQuery’s querying capabilities, users can easily create tailored reports and dashboards to meet their specific needs, thus enhancing decision-making processes.
-
Cost Management and Optimization Analysis: Utilize the plugin to automatically send cost-related metrics from various services into BigQuery. Analyzing this data can help businesses identify unnecessary expenses and optimize resource usage. By performing aggregation and transformation queries in BigQuery, organizations can create accurate forecasts and manage their cloud spending efficiently.
-
Cross-Team Collaboration on Monitoring Data: Enable different teams within an organization to share their monitoring data using BigQuery. With the help of this Telegraf plugin, teams can push their metrics to a central BigQuery instance, fostering collaboration. This data-sharing approach encourages best practices and cross-functional awareness, leading to collective improvements in system performance and reliability.
-
Historical Analysis for Capacity Planning: By using the BigQuery plugin, companies can collect and store historical metrics data essential for capacity planning. Analyzing trends over time can help anticipate system needs and scale infrastructure proactively. Organizations can create time-series analyses and identify patterns that inform their long-term strategic decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration