Webhooks and MySQL Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Webhooks and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Webhooks plugin allows Telegraf to receive and process HTTP requests from various external services via webhooks. This plugin enables users to collect real-time metrics and events and integrate them into their monitoring solutions.

The Telegraf SQL plugin allows you to store metrics from Telegraf directly into a MySQL database, making it easier to analyze and visualize the collected metrics.

Integration details

Webhooks

This Telegraf plugin is designed to act as a webhook listener by starting an HTTP server that registers multiple webhook endpoints. It provides a way to collect events from various services by capturing HTTP requests sent to defined paths. Each service can be configured with its specific authentication details and request handling options. The plugin stands out by allowing integration with any Telegraf output plugin, making it versatile for event-driven architectures. By enabling efficient reception of events, it opens possibilities for real-time monitoring and response systems, essential for modern applications that need instantaneous event handling and processing.

MySQL

Telegraf’s SQL output plugin is designed to seamlessly write metric data to a SQL database by dynamically creating tables and columns based on the incoming metrics. When configured for MySQL, the plugin leverages the go-sql-driver/mysql, which requires enabling the ANSI_QUOTES SQL mode to ensure proper handling of quoted identifiers. This dynamic schema creation approach ensures that each metric is stored in its own table with a structure derived from its fields and tags, providing a detailed, timestamped record of system performance. The flexibility of the plugin allows it to handle high-throughput environments, making it ideal for scenarios that demand robust, granular metric logging and historical data analysis.

Configuration

Webhooks

[[inputs.webhooks]]
  ## Address and port to host Webhook listener on
  service_address = ":1619"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  [inputs.webhooks.filestack]
    path = "/filestack"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.github]
    path = "/github"
    # secret = ""

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.mandrill]
    path = "/mandrill"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.rollbar]
    path = "/rollbar"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.papertrail]
    path = "/papertrail"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.particle]
    path = "/particle"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.artifactory]
    path = "/artifactory"

MySQL

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ##  sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
  driver = "mysql"

  ## Data source name
  ## The format of the data source name is different for each database driver.
  ## See the plugin readme for details.
  data_source_name = "username:password@tcp(host:port)/dbname"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS} - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE}({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - tablename as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL
  init_sql = "SET sql_mode='ANSI_QUOTES';"

  ## Maximum amount of time a connection may be idle. "0s" means connections are
  ## never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections
  ## are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on
  ## the right are the data types Telegraf will use when sending to a database.
  ##
  ## The database values used must be data types the destination database
  ## understands. It is up to the user to ensure that the selected data type is
  ## available in the database they are using. Refer to your database
  ## documentation for what data types are available and supported.
  #[outputs.sql.convert]
  #  integer              = "INT"
  #  real                 = "DOUBLE"
  #  text                 = "TEXT"
  #  timestamp            = "TIMESTAMP"
  #  defaultvalue         = "TEXT"
  #  unsigned             = "UNSIGNED"
  #  bool                 = "BOOL"
  #  ## This setting controls the behavior of the unsigned value. By default the
  #  ## setting will take the integer value and append the unsigned value to it. The other
  #  ## option is "literal", which will use the actual value the user provides to
  #  ## the unsigned option. This is useful for a database like ClickHouse where
  #  ## the unsigned value should use a value like "uint64".
  #  # conversion_style = "unsigned_suffix"

Input and output integration examples

Webhooks

  1. Real-time Notifications from Github: Integrate the Webhooks Input Plugin with Github to receive real-time notifications for events such as pull requests, commits, and issues. This allows development teams to instantly monitor crucial changes and updates in their repositories, improving collaboration and response times.

  2. Automated Alerting with Rollbar: Use this plugin to listen for errors reported from Rollbar, enabling teams to react swiftly to bugs and issues in production. By forwarding these alerts into a centralized monitoring system, teams can prioritize their responses based on severity and prevent escalated downtime.

  3. Performance Monitoring from Filestack: Capture events from Filestack to track file uploads, transformations, and errors. This setup helps businesses understand user interactions with file management processes, optimize workflow, and ensure high availability of file services.

  4. Centralized Logging with Papertrail: Tie in all logs sent to Papertrail through webhooks, allowing you to consolidate your logging strategy. With real-time log forwarding, teams can analyze trends and anomalies efficiently, ensuring they maintain visibility over critical operations.

MySQL

  1. Real-Time Web Analytics Storage: Leverage the plugin to capture website performance metrics and store them in MySQL. This setup enables teams to monitor user interactions, analyze traffic patterns, and dynamically adjust site features based on real-time data insights.

  2. IoT Device Monitoring: Utilize the plugin to collect metrics from a network of IoT sensors and log them into a MySQL database. This use case supports continuous monitoring of device health and performance, allowing for predictive maintenance and immediate response to anomalies.

  3. Financial Transaction Logging: Record high-frequency financial transaction data with precise timestamps. This approach supports robust audit trails, real-time fraud detection, and comprehensive historical analysis for compliance and reporting purposes.

  4. Application Performance Benchmarking: Integrate the plugin with application performance monitoring systems to log metrics into MySQL. This facilitates detailed benchmarking and trend analysis over time, enabling organizations to identify performance bottlenecks and optimize resource allocation effectively.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration