VMware vSphere and VictoriaMetrics Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The VMware vSphere Telegraf plugin provides a means to collect metrics from VMware vCenter servers, allowing for comprehensive monitoring and management of virtual resources in a vSphere environment.
This plugin enables Telegraf to efficiently write metrics directly into VictoriaMetrics using the InfluxDB line protocol, leveraging the performance and scalability features of VictoriaMetrics for large-scale time-series data.
Integration details
VMware vSphere
This plugin connects to VMware vSphere servers to gather a variety of metrics from virtual environments, enabling efficient monitoring and management of virtual resources. It interfaces with the vSphere API to collect statistics regarding clusters, hosts, resource pools, VMs, datastores, and vSAN entities, presenting them in a format suitable for analysis and visualization. The plugin is particularly valuable for administrators who manage VMware-based infrastructures, as it helps to track system performance, resource usage, and operational issues in real-time. By aggregating data from multiple sources, the plugin empowers users with insights that facilitate informed decision-making regarding resource allocation, troubleshooting, and ensuring optimal system performance. Additionally, the support for secret-store integration allows secure handling of sensitive credentials, promoting best practices in security and compliance assessments.
VictoriaMetrics
VictoriaMetrics supports direct ingestion of metrics in the InfluxDB line protocol, making this plugin ideal for efficient real-time metric storage and retrieval. The integration combines Telegraf’s extensive metric collection capabilities with VictoriaMetrics’ optimized storage and querying features, including compression, fast ingestion rates, and efficient disk utilization. Ideal for cloud-native and large-scale monitoring scenarios, this plugin offers simplicity, robust performance, and high reliability, enabling advanced operational insights and long-term storage solutions for large volumes of metrics.
Configuration
VMware vSphere
[[inputs.vsphere]]
vcenters = [ "https://vcenter.local/sdk" ]
username = "[email protected]"
password = "secret"
vm_metric_include = [
"cpu.demand.average",
"cpu.idle.summation",
"cpu.latency.average",
"cpu.readiness.average",
"cpu.ready.summation",
"cpu.run.summation",
"cpu.usagemhz.average",
"cpu.used.summation",
"cpu.wait.summation",
"mem.active.average",
"mem.granted.average",
"mem.latency.average",
"mem.swapin.average",
"mem.swapinRate.average",
"mem.swapout.average",
"mem.swapoutRate.average",
"mem.usage.average",
"mem.vmmemctl.average",
"net.bytesRx.average",
"net.bytesTx.average",
"net.droppedRx.summation",
"net.droppedTx.summation",
"net.usage.average",
"power.power.average",
"virtualDisk.numberReadAveraged.average",
"virtualDisk.numberWriteAveraged.average",
"virtualDisk.read.average",
"virtualDisk.readOIO.latest",
"virtualDisk.throughput.usage.average",
"virtualDisk.totalReadLatency.average",
"virtualDisk.totalWriteLatency.average",
"virtualDisk.write.average",
"virtualDisk.writeOIO.latest",
"sys.uptime.latest",
]
host_metric_include = [
"cpu.coreUtilization.average",
"cpu.costop.summation",
"cpu.demand.average",
"cpu.idle.summation",
"cpu.latency.average",
"cpu.readiness.average",
"cpu.ready.summation",
"cpu.swapwait.summation",
"cpu.usage.average",
"cpu.usagemhz.average",
"cpu.used.summation",
"cpu.utilization.average",
"cpu.wait.summation",
"disk.deviceReadLatency.average",
"disk.deviceWriteLatency.average",
"disk.kernelReadLatency.average",
"disk.kernelWriteLatency.average",
"disk.numberReadAveraged.average",
"disk.numberWriteAveraged.average",
"disk.read.average",
"disk.totalReadLatency.average",
"disk.totalWriteLatency.average",
"disk.write.average",
"mem.active.average",
"mem.latency.average",
"mem.state.latest",
"mem.swapin.average",
"mem.swapinRate.average",
"mem.swapout.average",
"mem.swapoutRate.average",
"mem.totalCapacity.average",
"mem.usage.average",
"mem.vmmemctl.average",
"net.bytesRx.average",
"net.bytesTx.average",
"net.droppedRx.summation",
"net.droppedTx.summation",
"net.errorsRx.summation",
"net.errorsTx.summation",
"net.usage.average",
"power.power.average",
"storageAdapter.numberReadAveraged.average",
"storageAdapter.numberWriteAveraged.average",
"storageAdapter.read.average",
"storageAdapter.write.average",
"sys.uptime.latest",
]
datacenter_metric_include = [] ## if omitted or empty, all metrics are collected
datacenter_metric_exclude = [ "*" ] ## Datacenters are not collected by default.
vsan_metric_include = [] ## if omitted or empty, all metrics are collected
vsan_metric_exclude = [ "*" ] ## vSAN are not collected by default.
separator = "_"
max_query_objects = 256
max_query_metrics = 256
collect_concurrency = 1
discover_concurrency = 1
object_discovery_interval = "300s"
timeout = "60s"
use_int_samples = true
custom_attribute_include = []
custom_attribute_exclude = ["*"]
metric_lookback = 3
ssl_ca = "/path/to/cafile"
ssl_cert = "/path/to/certfile"
ssl_key = "/path/to/keyfile"
insecure_skip_verify = false
historical_interval = "5m"
disconnected_servers_behavior = "error"
use_system_proxy = true
http_proxy_url = ""
VictoriaMetrics
[[outputs.influxdb]]
## URL of the VictoriaMetrics write endpoint
urls = ["http://localhost:8428"]
## VictoriaMetrics accepts InfluxDB line protocol directly
database = "db_name"
## Optional authentication
# username = "username"
# password = "password"
# skip_database_creation = true
# exclude_retention_policy_tag = true
# content_encoding = "gzip"
## Timeout for HTTP requests
timeout = "5s"
## Optional TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
VMware vSphere
-
Dynamic Resource Allocation: Utilize this plugin to monitor resource usage across a fleet of VMs and automatically adjust resource allocations based on performance metrics. This scenario could involve triggering scaling actions in real time based on CPU and memory usage metrics collected from the vSphere API, ensuring optimal performance and cost-efficiency.
-
Capacity Planning and Forecasting: Leverage the historical metrics gathered from vSphere to conduct capacity planning. Analyzing the trends of CPU, memory, and storage usage over time helps administrators anticipate when additional resources will be needed, avoiding outages and ensuring that the virtual infrastructure can handle growth.
-
Automated Alerting and Incident Response: Integrate this plugin with alerting tools to set up automated notifications based on the metrics gathered. For example, if the CPU usage on a host exceeds a specified threshold, it could trigger alerts and automatically initiate predefined remediation steps, such as migrating VMs to less utilized hosts.
-
Performance Benchmarking Across Clusters: Use the metrics collected to compare the performance of clusters in different vCenters. This benchmarking provides insights into which cluster configurations yield the best resource efficiency and can guide future infrastructure enhancements.
VictoriaMetrics
-
Cloud-Native Application Monitoring: Stream metrics from microservices deployed on Kubernetes directly into VictoriaMetrics. By centralizing metrics, organizations can perform real-time monitoring, rapid anomaly detection, and seamless scalability across dynamically evolving cloud environments.
-
Scalable IoT Data Management: Use the plugin to ingest sensor data from IoT deployments into VictoriaMetrics. This approach facilitates real-time analytics, predictive maintenance, and efficient management of massive volumes of sensor data with minimal storage overhead.
-
Financial Systems Performance Tracking: Leverage VictoriaMetrics via this plugin to store and analyze metrics from financial systems, capturing latency, transaction volume, and error rates. Organizations can rapidly identify and resolve performance bottlenecks, ensuring high availability and regulatory compliance.
-
Cross-Environment Performance Dashboards: Integrate metrics from diverse infrastructure components—such as cloud instances, containers, and physical servers into VictoriaMetrics. Using visualization tools, teams can build comprehensive dashboards for end-to-end performance visibility, proactive troubleshooting, and infrastructure optimization.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration