VMware vSphere and Sumo Logic Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider VMware vSphere and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The VMware vSphere Telegraf plugin provides a means to collect metrics from VMware vCenter servers, allowing for comprehensive monitoring and management of virtual resources in a vSphere environment.

The Sumo Logic plugin is designed to facilitate the sending of metrics from Telegraf to Sumo Logic’s HTTP Source. By utilizing this plugin, users can analyze their metric data in the Sumo Logic platform, leveraging various output data formats.

Integration details

VMware vSphere

This plugin connects to VMware vSphere servers to gather a variety of metrics from virtual environments, enabling efficient monitoring and management of virtual resources. It interfaces with the vSphere API to collect statistics regarding clusters, hosts, resource pools, VMs, datastores, and vSAN entities, presenting them in a format suitable for analysis and visualization. The plugin is particularly valuable for administrators who manage VMware-based infrastructures, as it helps to track system performance, resource usage, and operational issues in real-time. By aggregating data from multiple sources, the plugin empowers users with insights that facilitate informed decision-making regarding resource allocation, troubleshooting, and ensuring optimal system performance. Additionally, the support for secret-store integration allows secure handling of sensitive credentials, promoting best practices in security and compliance assessments.

Sumo Logic

This plugin facilitates the transmission of metrics to Sumo Logic’s HTTP Source, employing specified data formats for HTTP messages. Telegraf, which must be version 1.16.0 or higher, can send metrics encoded in several formats, including graphite, carbon2, and prometheus. These formats correspond to different content types recognized by Sumo Logic, ensuring that the metrics are correctly interpreted for analysis. Integration with Sumo Logic allows users to leverage a comprehensive analytics platform, enabling rich visualizations and insights from their metric data. The plugin provides configuration options such as setting URLs for the HTTP Metrics Source, choosing the data format, and specifying additional parameters like timeout and request size, which enhance flexibility and control in data monitoring workflows.

Configuration

VMware vSphere

[[inputs.vsphere]]
  vcenters = [ "https://vcenter.local/sdk" ]
  username = "[email protected]"
  password = "secret"

  vm_metric_include = [
    "cpu.demand.average",
    "cpu.idle.summation",
    "cpu.latency.average",
    "cpu.readiness.average",
    "cpu.ready.summation",
    "cpu.run.summation",
    "cpu.usagemhz.average",
    "cpu.used.summation",
    "cpu.wait.summation",
    "mem.active.average",
    "mem.granted.average",
    "mem.latency.average",
    "mem.swapin.average",
    "mem.swapinRate.average",
    "mem.swapout.average",
    "mem.swapoutRate.average",
    "mem.usage.average",
    "mem.vmmemctl.average",
    "net.bytesRx.average",
    "net.bytesTx.average",
    "net.droppedRx.summation",
    "net.droppedTx.summation",
    "net.usage.average",
    "power.power.average",
    "virtualDisk.numberReadAveraged.average",
    "virtualDisk.numberWriteAveraged.average",
    "virtualDisk.read.average",
    "virtualDisk.readOIO.latest",
    "virtualDisk.throughput.usage.average",
    "virtualDisk.totalReadLatency.average",
    "virtualDisk.totalWriteLatency.average",
    "virtualDisk.write.average",
    "virtualDisk.writeOIO.latest",
    "sys.uptime.latest",
  ]

  host_metric_include = [
    "cpu.coreUtilization.average",
    "cpu.costop.summation",
    "cpu.demand.average",
    "cpu.idle.summation",
    "cpu.latency.average",
    "cpu.readiness.average",
    "cpu.ready.summation",
    "cpu.swapwait.summation",
    "cpu.usage.average",
    "cpu.usagemhz.average",
    "cpu.used.summation",
    "cpu.utilization.average",
    "cpu.wait.summation",
    "disk.deviceReadLatency.average",
    "disk.deviceWriteLatency.average",
    "disk.kernelReadLatency.average",
    "disk.kernelWriteLatency.average",
    "disk.numberReadAveraged.average",
    "disk.numberWriteAveraged.average",
    "disk.read.average",
    "disk.totalReadLatency.average",
    "disk.totalWriteLatency.average",
    "disk.write.average",
    "mem.active.average",
    "mem.latency.average",
    "mem.state.latest",
    "mem.swapin.average",
    "mem.swapinRate.average",
    "mem.swapout.average",
    "mem.swapoutRate.average",
    "mem.totalCapacity.average",
    "mem.usage.average",
    "mem.vmmemctl.average",
    "net.bytesRx.average",
    "net.bytesTx.average",
    "net.droppedRx.summation",
    "net.droppedTx.summation",
    "net.errorsRx.summation",
    "net.errorsTx.summation",
    "net.usage.average",
    "power.power.average",
    "storageAdapter.numberReadAveraged.average",
    "storageAdapter.numberWriteAveraged.average",
    "storageAdapter.read.average",
    "storageAdapter.write.average",
    "sys.uptime.latest",
  ]

  datacenter_metric_include = [] ## if omitted or empty, all metrics are collected
  datacenter_metric_exclude = [ "*" ] ## Datacenters are not collected by default.

  vsan_metric_include = [] ## if omitted or empty, all metrics are collected
  vsan_metric_exclude = [ "*" ] ## vSAN are not collected by default.

  separator = "_"
  max_query_objects = 256
  max_query_metrics = 256
  collect_concurrency = 1
  discover_concurrency = 1
  object_discovery_interval = "300s"
  timeout = "60s"
  use_int_samples = true
  custom_attribute_include = []
  custom_attribute_exclude = ["*"]
  metric_lookback = 3
  ssl_ca = "/path/to/cafile"
  ssl_cert = "/path/to/certfile"
  ssl_key = "/path/to/keyfile"
  insecure_skip_verify = false
  historical_interval = "5m"
  disconnected_servers_behavior = "error"
  use_system_proxy = true
  http_proxy_url = ""

Sumo Logic

[[outputs.sumologic]]
  ## Unique URL generated for your HTTP Metrics Source.
  ## This is the address to send metrics to.
  # url = "https://events.sumologic.net/receiver/v1/http/"

  ## Data format to be used for sending metrics.
  ## This will set the "Content-Type" header accordingly.
  ## Currently supported formats:
  ## * graphite - for Content-Type of application/vnd.sumologic.graphite
  ## * carbon2 - for Content-Type of application/vnd.sumologic.carbon2
  ## * prometheus - for Content-Type of application/vnd.sumologic.prometheus
  ##
  ## More information can be found at:
  ## https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source/Upload-Metrics-to-an-HTTP-Source#content-type-headers-for-metrics
  ##
  ## NOTE:
  ## When unset, telegraf will by default use the influx serializer which is currently unsupported
  ## in HTTP Source.
  data_format = "carbon2"

  ## Timeout used for HTTP request
  # timeout = "5s"

  ## Max HTTP request body size in bytes before compression (if applied).
  ## By default 1MB is recommended.
  ## NOTE:
  ## Bear in mind that in some serializer a metric even though serialized to multiple
  ## lines cannot be split any further so setting this very low might not work
  ## as expected.
  # max_request_body_size = 1000000

  ## Additional, Sumo specific options.
  ## Full list can be found here:
  ## https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source/Upload-Metrics-to-an-HTTP-Source#supported-http-headers

  ## Desired source name.
  ## Useful if you want to override the source name configured for the source.
  # source_name = ""

  ## Desired host name.
  ## Useful if you want to override the source host configured for the source.
  # source_host = ""

  ## Desired source category.
  ## Useful if you want to override the source category configured for the source.
  # source_category = ""

  ## Comma-separated key=value list of dimensions to apply to every metric.
  ## Custom dimensions will allow you to query your metrics at a more granular level.
  # dimensions = ""
</code></pre>

Input and output integration examples

VMware vSphere

  1. Dynamic Resource Allocation: Utilize this plugin to monitor resource usage across a fleet of VMs and automatically adjust resource allocations based on performance metrics. This scenario could involve triggering scaling actions in real time based on CPU and memory usage metrics collected from the vSphere API, ensuring optimal performance and cost-efficiency.

  2. Capacity Planning and Forecasting: Leverage the historical metrics gathered from vSphere to conduct capacity planning. Analyzing the trends of CPU, memory, and storage usage over time helps administrators anticipate when additional resources will be needed, avoiding outages and ensuring that the virtual infrastructure can handle growth.

  3. Automated Alerting and Incident Response: Integrate this plugin with alerting tools to set up automated notifications based on the metrics gathered. For example, if the CPU usage on a host exceeds a specified threshold, it could trigger alerts and automatically initiate predefined remediation steps, such as migrating VMs to less utilized hosts.

  4. Performance Benchmarking Across Clusters: Use the metrics collected to compare the performance of clusters in different vCenters. This benchmarking provides insights into which cluster configurations yield the best resource efficiency and can guide future infrastructure enhancements.

Sumo Logic

  1. Real-Time System Monitoring Dashboard: Utilize the Sumo Logic plugin to continuously feed performance metrics from your servers into a Sumo Logic dashboard. This setup allows tech teams to visualize system health and load in real-time, enabling quicker identification of any performance bottlenecks or system failures through detailed graphs and metrics.

  2. Automated Alerting System: Configure the plugin to send metrics that trigger alerts in Sumo Logic for specific thresholds such as CPU usage or memory consumption. By setting up automated alerts, teams can proactively address issues before they escalate into critical failures, significantly improving response times and overall system reliability.

  3. Cross-System Metrics Aggregation: Integrate multiple Telegraf instances across different environments (development, testing, production) and funnel all metrics to a central Sumo Logic instance using this plugin. This aggregation enables comprehensive analysis across environments, facilitating better monitoring and informed decision-making across the software development lifecycle.

  4. Custom Metrics with Dimensions Tracking: Use the Sumo Logic plugin to send customized metrics that include dimensions identifying various aspects of your infrastructure (e.g., environment, service type). This granular tracking allows for more tailored analytics, enabling your team to dissect performance across different application layers or business functions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration