Hashicorp Vault and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Hashicorp Vault plugin for Telegraf allows for the collection of metrics from Hashicorp Vault services, facilitating monitoring and operational insights.
The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.
Integration details
Hashicorp Vault
The Hashicorp Vault plugin is designed to collect metrics from Vault agents running within a cluster. It enables Telegraf, an agent for collecting and reporting metrics, to interface with the Vault services, typically listening on a local address such as http://127.0.0.1:8200
. This plugin requires a valid token for authorization, ensuring secure access to the Vault API. Users must configure either a token directly or provide a path to a token file, enhancing flexibility in authentication methods. Proper configuration of the timeout and optional TLS settings further relates to the security and responsiveness of the metrics collection process. As Vault is a critical tool in managing secrets and protecting sensitive data, monitoring its performance and health through this plugin is essential for maintaining operational security and efficiency.
MongoDB
This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.
Configuration
Hashicorp Vault
[[inputs.vault]]
## URL for the Vault agent
# url = "http://127.0.0.1:8200"
## Use Vault token for authorization.
## Vault token configuration is mandatory.
## If both are empty or both are set, an error is thrown.
# token_file = "/path/to/auth/token"
## OR
token = "s.CDDrgg5zPv5ssI0Z2P4qxJj2"
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
Hashicorp Vault
-
Centralized Secret Management Monitoring: Utilize the Vault plugin to monitor multiple Vault instances across a distributed system, allowing for a unified view of secret access patterns and system health. This setup can help DevOps teams quickly identify any anomalies in secret access, providing essential insights into security postures across different environments.
-
Audit Logging Integration: Configure this plugin to feed monitoring metrics into an audit logging system, enabling organizations to have a comprehensive view of their Vault interactions. By correlating audit logs with metrics, teams can investigate issues, optimize performance, and ensure compliance with security policies more effectively.
-
Performance Benchmarking During Deployments: During application deployments that interact with Vault, use the plugin to monitor the effects of those deployments on Vault performance. This allows engineering teams to understand how changes impact secret management workflows and to proactively address performance bottlenecks, ensuring smooth deployment processes.
-
Alerting for Threshold Exceedance: Integrate this plugin with alerting mechanisms to notify administrators when metrics exceed predefined thresholds. This proactive monitoring can help teams respond swiftly to potential issues, maintaining system reliability and uptime by allowing them to take action before any serious incidents arise.
MongoDB
-
Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.
-
Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.
-
Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.
-
Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration