Hashicorp Vault and Azure Data Explorer Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Hashicorp Vault plugin for Telegraf allows for the collection of metrics from Hashicorp Vault services, facilitating monitoring and operational insights.
The Azure Data Explorer plugin allows integration of metrics collection with Azure Data Explorer, enabling users to analyze and query their telemetry data efficiently. With this plugin, users can configure ingestion settings to suit their needs and leverage Azure’s powerful analytical capabilities.
Integration details
Hashicorp Vault
The Hashicorp Vault plugin is designed to collect metrics from Vault agents running within a cluster. It enables Telegraf, an agent for collecting and reporting metrics, to interface with the Vault services, typically listening on a local address such as http://127.0.0.1:8200
. This plugin requires a valid token for authorization, ensuring secure access to the Vault API. Users must configure either a token directly or provide a path to a token file, enhancing flexibility in authentication methods. Proper configuration of the timeout and optional TLS settings further relates to the security and responsiveness of the metrics collection process. As Vault is a critical tool in managing secrets and protecting sensitive data, monitoring its performance and health through this plugin is essential for maintaining operational security and efficiency.
Azure Data Explorer
The Azure Data Explorer plugin allows users to write metrics, logs, and time series data collected from various Telegraf input plugins into Azure Data Explorer, Azure Synapse, and Real-Time Analytics in Fabric. This integration serves as a bridge, allowing applications and services to monitor their performance metrics or logs efficiently. Azure Data Explorer is optimized for analytics over large volumes of diverse data types, making it an excellent choice for real-time analytics and monitoring solutions in cloud environments. The plugin empowers users to configure metrics ingestion based on their requirements, define table schemas dynamically, and set various ingestion methods while retaining flexibility regarding roles and permissions needed for database operations. This supports scalable and secure monitoring setups for modern applications that utilize cloud services.
Configuration
Hashicorp Vault
[[inputs.vault]]
## URL for the Vault agent
# url = "http://127.0.0.1:8200"
## Use Vault token for authorization.
## Vault token configuration is mandatory.
## If both are empty or both are set, an error is thrown.
# token_file = "/path/to/auth/token"
## OR
token = "s.CDDrgg5zPv5ssI0Z2P4qxJj2"
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
Azure Data Explorer
[[outputs.azure_data_explorer]]
## The URI property of the Azure Data Explorer resource on Azure
## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
endpoint_url = ""
## The Azure Data Explorer database that the metrics will be ingested into.
## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
## ex: "exampledatabase"
database = ""
## Timeout for Azure Data Explorer operations
# timeout = "20s"
## Type of metrics grouping used when pushing to Azure Data Explorer.
## Default is "TablePerMetric" for one table per different metric.
## For more information, please check the plugin README.
# metrics_grouping_type = "TablePerMetric"
## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
# table_name = ""
## Creates tables and relevant mapping if set to true(default).
## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
# create_tables = true
## Ingestion method to use.
## Available options are
## - managed -- streaming ingestion with fallback to batched ingestion or the "queued" method below
## - queued -- queue up metrics data and process sequentially
# ingestion_type = "queued"
Input and output integration examples
Hashicorp Vault
-
Centralized Secret Management Monitoring: Utilize the Vault plugin to monitor multiple Vault instances across a distributed system, allowing for a unified view of secret access patterns and system health. This setup can help DevOps teams quickly identify any anomalies in secret access, providing essential insights into security postures across different environments.
-
Audit Logging Integration: Configure this plugin to feed monitoring metrics into an audit logging system, enabling organizations to have a comprehensive view of their Vault interactions. By correlating audit logs with metrics, teams can investigate issues, optimize performance, and ensure compliance with security policies more effectively.
-
Performance Benchmarking During Deployments: During application deployments that interact with Vault, use the plugin to monitor the effects of those deployments on Vault performance. This allows engineering teams to understand how changes impact secret management workflows and to proactively address performance bottlenecks, ensuring smooth deployment processes.
-
Alerting for Threshold Exceedance: Integrate this plugin with alerting mechanisms to notify administrators when metrics exceed predefined thresholds. This proactive monitoring can help teams respond swiftly to potential issues, maintaining system reliability and uptime by allowing them to take action before any serious incidents arise.
Azure Data Explorer
-
Real-Time Monitoring Dashboard: By integrating metrics from various services into Azure Data Explorer using this plugin, organizations can build comprehensive dashboards that reflect real-time performance metrics. This allows teams to respond proactively to performance issues and optimize system health without delay.
-
Centralized Log Management: Utilize Azure Data Explorer to consolidate logs from multiple applications and services. By utilizing the plugin, organizations can streamline their log analysis processes, making it easier to search, filter, and derive insights from historical data accumulated over time.
-
Data-Driven Alerting Systems: Enhance monitoring capabilities by configuring alerts based on metrics sent via this plugin. Organizations can set thresholds and automate incident responses, significantly reducing downtime and improving the reliability of critical operations.
-
Machine Learning Model Training: By leveraging the data sent to Azure Data Explorer, organizations can perform large-scale analytics and prepare the data for feeding into machine learning models. This plugin enables the structuring of data that can subsequently be used for predictive analytics, leading to enhanced decision-making capabilities.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration