Tail and IoTDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Tail Telegraf plugin collects metrics by tailing specified log files, capturing new log entries in real-time for further analysis.
This plugin saves Telegraf metrics to an Apache IoTDB backend, supporting session connection and data insertion.
Integration details
Tail
The tail plugin is designed to continuously monitor and parse log files, making it ideal for real-time log analysis and monitoring. It mimics the functionality of the Unix tail
command, allowing users to specify a file or pattern and begin reading new lines as they are added. Key features include the ability to follow log-rotated files, start reading from the end of a file, and support various parsing formats for the log messages. Users can customize the plugin through various configuration options, such as specifying file encoding, the method for watching file updates, and filter settings for processing log data. This plugin is particularly valuable in environments where log data is critical for monitoring application performance and diagnosing issues.
IoTDB
Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Its light-weight architecture, high performance, and rich feature set create a perfect fit for massive data storage, high-speed data ingestion, and complex analytics in the IoT industrial fields. IoTDB deeply integrates with Apache Hadoop, Spark, and Flink, which further enhances its capabilities in handling large scale data and sophisticated processing tasks.
Configuration
Tail
[[inputs.tail]]
## File names or a pattern to tail.
## These accept standard unix glob matching rules, but with the addition of
## ** as a "super asterisk". ie:
## "/var/log/**.log" -> recursively find all .log files in /var/log
## "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
## "/var/log/apache.log" -> just tail the apache log file
## "/var/log/log[!1-2]* -> tail files without 1-2
## "/var/log/log[^1-2]* -> identical behavior as above
## See https://github.com/gobwas/glob for more examples
##
files = ["/var/mymetrics.out"]
## Read file from beginning.
# from_beginning = false
## Whether file is a named pipe
# pipe = false
## Method used to watch for file updates. Can be either "inotify" or "poll".
## inotify is supported on linux, *bsd, and macOS, while Windows requires
## using poll. Poll checks for changes every 250ms.
# watch_method = "inotify"
## Maximum lines of the file to process that have not yet be written by the
## output. For best throughput set based on the number of metrics on each
## line and the size of the output's metric_batch_size.
# max_undelivered_lines = 1000
## Character encoding to use when interpreting the file contents. Invalid
## characters are replaced using the unicode replacement character. When set
## to the empty string the data is not decoded to text.
## ex: character_encoding = "utf-8"
## character_encoding = "utf-16le"
## character_encoding = "utf-16be"
## character_encoding = ""
# character_encoding = ""
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
# path_tag = "path"
## Filters to apply to files before generating metrics
## "ansi_color" removes ANSI colors
# filters = []
## multiline parser/codec
## https://www.elastic.co/guide/en/logstash/2.4/plugins-filters-multiline.html
#[inputs.tail.multiline]
## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
#pattern = "^\s"
## The field's value must be previous or next and indicates the relation to the
## multi-line event.
#match_which_line = "previous"
## The invert_match can be true or false (defaults to false).
## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
#invert_match = false
## The handling method for quoted text (defaults to 'ignore').
## The following methods are available:
## ignore -- do not consider quotation (default)
## single-quotes -- consider text quoted by single quotes (')
## double-quotes -- consider text quoted by double quotes (")
## backticks -- consider text quoted by backticks (`)
## When handling quotes, escaped quotes (e.g. \") are handled correctly.
#quotation = "ignore"
## The preserve_newline option can be true or false (defaults to false).
## If true, the newline character is preserved for multiline elements,
## this is useful to preserve message-structure e.g. for logging outputs.
#preserve_newline = false
#After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
#timeout = 5s
IoTDB
[[outputs.iotdb]]
## Configuration of IoTDB server connection
host = "127.0.0.1"
# port = "6667"
## Configuration of authentication
# user = "root"
# password = "root"
## Timeout to open a new session.
## A value of zero means no timeout.
# timeout = "5s"
## Configuration of type conversion for 64-bit unsigned int
## IoTDB currently DOES NOT support unsigned integers (version 13.x).
## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
## however, this is not true for 64-bit values in general as overflows may occur.
## The following setting allows to specify the handling of 64-bit unsigned integers.
## Available values are:
## - "int64" -- convert to 64-bit signed integers and accept overflows
## - "int64_clip" -- convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
## - "text" -- convert to the string representation of the value
# uint64_conversion = "int64_clip"
## Configuration of TimeStamp
## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
## Available value:
## "second", "millisecond", "microsecond", "nanosecond"(default)
# timestamp_precision = "nanosecond"
## Handling of tags
## Tags are not fully supported by IoTDB.
## A guide with suggestions on how to handle tags can be found here:
## https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
##
## Available values are:
## - "fields" -- convert tags to fields in the measurement
## - "device_id" -- attach tags to the device ID
##
## For Example, a metric named "root.sg.device" with the tags `tag1: "private"` and `tag2: "working"` and
## fields `s1: 100` and `s2: "hello"` will result in the following representations in IoTDB
## - "fields" -- root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
## - "device_id" -- root.sg.device.private.working, s1=100, s2="hello"
# convert_tags_to = "device_id"
## Handling of unsupported characters
## Some characters in different versions of IoTDB are not supported in path name
## A guide with suggetions on valid paths can be found here:
## for iotdb 0.13.x -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
## for iotdb 1.x.x and above -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
##
## Available values are:
## - "1.0", "1.1", "1.2", "1.3" -- enclose in `` the world having forbidden character
## such as @ $ # : [ ] { } ( ) space
## - "0.13" -- enclose in `` the world having forbidden character
## such as space
##
## Keep this section commented if you don't want to sanitize the path
# sanitize_tag = "1.3"
Input and output integration examples
Tail
-
Real-Time Server Health Monitoring: Implement the Tail plugin to parse web server access logs in real-time, providing immediate visibility into user activity, error rates, and performance metrics. By visualizing this log data, operations teams can quickly identify and respond to spikes in traffic or errors, enhancing system reliability and user experience.
-
Centralized Log Management: Utilize the Tail plugin to aggregate logs from multiple sources across a distributed system. By configuring each service to send its logs to a centralized location via the Tail plugin, teams can simplify log analysis and ensure that all relevant data is accessible from a single interface, streamlining troubleshooting processes.
-
Security Incident Detection: Use this plugin to monitor authentication logs for unauthorized access attempts or suspicious activity. By setting up alerts on certain log messages, teams can leverage this plugin to enhance security postures and respond promptly to potential security threats, reducing the risk of breaches and increasing overall system integrity.
-
Dynamic Application Performance Insights: Integrate with analytics tools to create real-time dashboards that display application performance metrics based on log data. This setup not only helps developers diagnose bottlenecks and inefficiencies but also allows for proactive performance tuning and resource allocation, optimizing application behavior under varying loads.
IoTDB
-
Real-Time IoT Monitoring: Utilize the IoTDB plugin to gather sensor data from various IoT devices and save it in an Apache IoTDB backend, facilitating real-time monitoring of environmental conditions such as temperature and humidity. This use case enables organizations to analyze trends over time and make informed decisions based on historical data, while also utilizing IoTDB’s efficient storage and querying capabilities.
-
Smart Agriculture Data Collection: Use the IoTDB plugin to collect metrics from smart agriculture sensors deployed in fields. By transmitting moisture levels, nutrient content, and atmospheric conditions to IoTDB, farmers can access detailed insights into optimal planting and watering schedules, thus improving crop yields and resource management.
-
Energy Consumption Analytics: Leverage the IoTDB plugin to track energy consumption metrics from smart meters across a utility network. This integration enables analytics to identify peaks in usage and predict future consumption patterns, ultimately supporting energy conservation initiatives and improved utility management.
-
Automated Industrial Equipment Monitoring: Use this plugin to gather operational metrics from machinery in a manufacturing plant and store them in IoTDB for analysis. This setup can help identify inefficiencies, predictive maintenance needs, and operational anomalies, ensuring optimal performance and minimizing unexpected downtimes.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration