Tail and Dynatrace Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Tail and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Tail Telegraf plugin collects metrics by tailing specified log files, capturing new log entries in real-time for further analysis.

The Dynatrace plugin allows users to send metrics collected by Telegraf directly to Dynatrace for monitoring and analysis. This integration enhances the observability of systems and applications, providing valuable insights into performance and operational health.

Integration details

Tail

The tail plugin is designed to continuously monitor and parse log files, making it ideal for real-time log analysis and monitoring. It mimics the functionality of the Unix tail command, allowing users to specify a file or pattern and begin reading new lines as they are added. Key features include the ability to follow log-rotated files, start reading from the end of a file, and support various parsing formats for the log messages. Users can customize the plugin through various configuration options, such as specifying file encoding, the method for watching file updates, and filter settings for processing log data. This plugin is particularly valuable in environments where log data is critical for monitoring application performance and diagnosing issues.

Dynatrace

The Dynatrace plugin for Telegraf facilitates the transmission of metrics to the Dynatrace platform via the Dynatrace Metrics API V2. This plugin can function in two modes: it can run alongside the Dynatrace OneAgent, which automates authentication, or it can operate in a standalone configuration that requires manual specification of the URL and API token for environments without a OneAgent. The plugin primarily reports metrics as gauges unless explicitly configured to treat certain metrics as delta counters using the available config options. This feature empowers users to customize the behavior of metrics sent to Dynatrace, harnessing the robust capabilities of the platform for comprehensive performance monitoring and observability. It’s crucial for users to ensure compliance with version requirements for both Dynatrace and Telegraf, thereby optimizing compatibility and performance when integrating with the Dynatrace ecosystem.

Configuration

Tail

[[inputs.tail]]
  ## File names or a pattern to tail.
  ## These accept standard unix glob matching rules, but with the addition of
  ## ** as a "super asterisk". ie:
  ##   "/var/log/**.log"  -> recursively find all .log files in /var/log
  ##   "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
  ##   "/var/log/apache.log" -> just tail the apache log file
  ##   "/var/log/log[!1-2]*  -> tail files without 1-2
  ##   "/var/log/log[^1-2]*  -> identical behavior as above
  ## See https://github.com/gobwas/glob for more examples
  ##
  files = ["/var/mymetrics.out"]

  ## Read file from beginning.
  # from_beginning = false

  ## Whether file is a named pipe
  # pipe = false

  ## Method used to watch for file updates.  Can be either "inotify" or "poll".
  ## inotify is supported on linux, *bsd, and macOS, while Windows requires
  ## using poll. Poll checks for changes every 250ms.
  # watch_method = "inotify"

  ## Maximum lines of the file to process that have not yet be written by the
  ## output.  For best throughput set based on the number of metrics on each
  ## line and the size of the output's metric_batch_size.
  # max_undelivered_lines = 1000

  ## Character encoding to use when interpreting the file contents.  Invalid
  ## characters are replaced using the unicode replacement character.  When set
  ## to the empty string the data is not decoded to text.
  ##   ex: character_encoding = "utf-8"
  ##       character_encoding = "utf-16le"
  ##       character_encoding = "utf-16be"
  ##       character_encoding = ""
  # character_encoding = ""

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
  # path_tag = "path"

  ## Filters to apply to files before generating metrics
  ## "ansi_color" removes ANSI colors
  # filters = []

  ## multiline parser/codec
  ## https://www.elastic.co/guide/en/logstash/2.4/plugins-filters-multiline.html
  #[inputs.tail.multiline]
    ## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
    #pattern = "^\s"

    ## The field's value must be previous or next and indicates the relation to the
    ## multi-line event.
    #match_which_line = "previous"

    ## The invert_match can be true or false (defaults to false).
    ## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
    #invert_match = false

    ## The handling method for quoted text (defaults to 'ignore').
    ## The following methods are available:
    ##   ignore  -- do not consider quotation (default)
    ##   single-quotes -- consider text quoted by single quotes (')
    ##   double-quotes -- consider text quoted by double quotes (")
    ##   backticks     -- consider text quoted by backticks (`)
    ## When handling quotes, escaped quotes (e.g. \") are handled correctly.
    #quotation = "ignore"

    ## The preserve_newline option can be true or false (defaults to false).
    ## If true, the newline character is preserved for multiline elements,
    ## this is useful to preserve message-structure e.g. for logging outputs.
    #preserve_newline = false

    #After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
    #timeout = 5s

Dynatrace

[[outputs.dynatrace]]
  ## For usage with the Dynatrace OneAgent you can omit any configuration,
  ## the only requirement is that the OneAgent is running on the same host.
  ## Only setup environment url and token if you want to monitor a Host without the OneAgent present.
  ##
  ## Your Dynatrace environment URL.
  ## For Dynatrace OneAgent you can leave this empty or set it to "http://127.0.0.1:14499/metrics/ingest" (default)
  ## For Dynatrace SaaS environments the URL scheme is "https://{your-environment-id}.live.dynatrace.com/api/v2/metrics/ingest"
  ## For Dynatrace Managed environments the URL scheme is "https://{your-domain}/e/{your-environment-id}/api/v2/metrics/ingest"
  url = ""

  ## Your Dynatrace API token.
  ## Create an API token within your Dynatrace environment, by navigating to Settings > Integration > Dynatrace API
  ## The API token needs data ingest scope permission. When using OneAgent, no API token is required.
  api_token = ""

  ## Optional prefix for metric names (e.g.: "telegraf")
  prefix = "telegraf"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Optional flag for ignoring tls certificate check
  # insecure_skip_verify = false

  ## Connection timeout, defaults to "5s" if not set.
  timeout = "5s"

  ## If you want metrics to be treated and reported as delta counters, add the metric names here
  additional_counters = [ ]

  ## In addition or as an alternative to additional_counters, if you want metrics to be treated and
  ## reported as delta counters using regular expression pattern matching
  additional_counters_patterns = [ ]

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Optional dimensions to be added to every metric
  # [outputs.dynatrace.default_dimensions]
  # default_key = "default value"

Input and output integration examples

Tail

  1. Real-Time Server Health Monitoring: Implement the Tail plugin to parse web server access logs in real-time, providing immediate visibility into user activity, error rates, and performance metrics. By visualizing this log data, operations teams can quickly identify and respond to spikes in traffic or errors, enhancing system reliability and user experience.

  2. Centralized Log Management: Utilize the Tail plugin to aggregate logs from multiple sources across a distributed system. By configuring each service to send its logs to a centralized location via the Tail plugin, teams can simplify log analysis and ensure that all relevant data is accessible from a single interface, streamlining troubleshooting processes.

  3. Security Incident Detection: Use this plugin to monitor authentication logs for unauthorized access attempts or suspicious activity. By setting up alerts on certain log messages, teams can leverage this plugin to enhance security postures and respond promptly to potential security threats, reducing the risk of breaches and increasing overall system integrity.

  4. Dynamic Application Performance Insights: Integrate with analytics tools to create real-time dashboards that display application performance metrics based on log data. This setup not only helps developers diagnose bottlenecks and inefficiencies but also allows for proactive performance tuning and resource allocation, optimizing application behavior under varying loads.

Dynatrace

  1. Cloud Infrastructure Monitoring: Utilize the Dynatrace plugin to monitor a cloud infrastructure setup, feeding real-time metrics from Telegraf into Dynatrace. This integration provides a holistic view of resource utilization, application performance, and system health, enabling proactive responses to performance issues across various cloud environments.

  2. Custom Application Performance Metrics: Implement custom application-specific metrics by configuring the Dynatrace output plugin to send tailored metrics from Telegraf. By leveraging additional counters and dimension options, development teams can gain insights that are precisely aligned with their application’s operational requirements, allowing for targeted optimization efforts.

  3. Multi-Environment Metrics Management: For organizations running multiple Dynatrace environments (e.g., production, staging, and development), use this plugin to manage metrics for all environments from a single Telegraf instance. With proper configuration of endpoints and API tokens, teams can maintain consistent monitoring practices throughout the SDLC, ensuring that performance anomalies are detected early in the development process.

  4. Automated Alerting Based on Metrics Changes: Integrate the Dynatrace output plugin with an alerting mechanism that triggers notifications when specific metrics exceed defined thresholds. This scenario involves configuring additional counters to monitor crucial application performance indicators, enabling swift remediation actions to maintain service availability and user satisfaction.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration