Syslog and Microsoft SQL Server Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Syslog plugin enables the collection of syslog messages from various sources using standard networking protocols. This functionality is critical for environments where systems need to be monitored and logged efficiently.
Telegraf’s SQL plugin facilitates the storage of metrics in SQL databases. When configured for Microsoft SQL Server, it supports the specific DSN format and schema requirements, allowing for seamless integration with SQL Server.
Integration details
Syslog
The Syslog plugin for Telegraf captures syslog messages transmitted over various protocols such as TCP, UDP, and TLS. It supports both RFC 5424 (the newer syslog protocol) and the older RFC 3164 (BSD syslog protocol). This plugin operates as a service input, effectively starting a service that listens for incoming syslog messages. Unlike traditional plugins, service inputs may not function with standard interval settings or CLI options like --once
. It includes options for setting network configurations, socket permissions, message handling, and connection handling. Furthermore, the integration with Rsyslog allows forwarding of logging messages, making it a powerful tool for collecting and relaying system logs in real-time, thus seamlessly integrating into monitoring and logging systems.
Microsoft SQL Server
Telegraf’s SQL output plugin for Microsoft SQL Server is designed to capture and store metric data by dynamically creating tables and columns that match the structure of incoming data. This integration leverages the go-mssqldb driver, which follows the SQL Server connection protocol through a DSN that includes server, port, and database details. Although the driver is considered experimental due to limited unit tests, it provides robust support for dynamic schema generation and data insertion, enabling detailed time-stamped records of system performance. This flexibility makes it a valuable tool for environments that demand reliable and granular metric logging, despite its experimental status.
Configuration
Syslog
[[inputs.syslog]]
## Protocol, address and port to host the syslog receiver.
## If no host is specified, then localhost is used.
## If no port is specified, 6514 is used (RFC5425#section-4.1).
## ex: server = "tcp://localhost:6514"
## server = "udp://:6514"
## server = "unix:///var/run/telegraf-syslog.sock"
## When using tcp, consider using 'tcp4' or 'tcp6' to force the usage of IPv4
## or IPV6 respectively. There are cases, where when not specified, a system
## may force an IPv4 mapped IPv6 address.
server = "tcp://127.0.0.1:6514"
## Permission for unix sockets (only available on unix sockets)
## This setting may not be respected by some platforms. To safely restrict
## permissions it is recommended to place the socket into a previously
## created directory with the desired permissions.
## ex: socket_mode = "777"
# socket_mode = ""
## Maximum number of concurrent connections (only available on stream sockets like TCP)
## Zero means unlimited.
# max_connections = 0
## Read timeout (only available on stream sockets like TCP)
## Zero means unlimited.
# read_timeout = "0s"
## Optional TLS configuration (only available on stream sockets like TCP)
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Enables client authentication if set.
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Maximum socket buffer size (in bytes when no unit specified)
## For stream sockets, once the buffer fills up, the sender will start
## backing up. For datagram sockets, once the buffer fills up, metrics will
## start dropping. Defaults to the OS default.
# read_buffer_size = "64KiB"
## Period between keep alive probes (only applies to TCP sockets)
## Zero disables keep alive probes. Defaults to the OS configuration.
# keep_alive_period = "5m"
## Content encoding for message payloads
## Can be set to "gzip" for compressed payloads or "identity" for no encoding.
# content_encoding = "identity"
## Maximum size of decoded packet (in bytes when no unit specified)
# max_decompression_size = "500MB"
## Framing technique used for messages transport
## Available settings are:
## octet-counting -- see RFC5425#section-4.3.1 and RFC6587#section-3.4.1
## non-transparent -- see RFC6587#section-3.4.2
# framing = "octet-counting"
## The trailer to be expected in case of non-transparent framing (default = "LF").
## Must be one of "LF", or "NUL".
# trailer = "LF"
## Whether to parse in best effort mode or not (default = false).
## By default best effort parsing is off.
# best_effort = false
## The RFC standard to use for message parsing
## By default RFC5424 is used. RFC3164 only supports UDP transport (no streaming support)
## Must be one of "RFC5424", or "RFC3164".
# syslog_standard = "RFC5424"
## Character to prepend to SD-PARAMs (default = "_").
## A syslog message can contain multiple parameters and multiple identifiers within structured data section.
## Eg., [id1 name1="val1" name2="val2"][id2 name1="val1" nameA="valA"]
## For each combination a field is created.
## Its name is created concatenating identifier, sdparam_separator, and parameter name.
# sdparam_separator = "_"
Microsoft SQL Server
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "mssql"
## Data source name
## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## You can customize the mapping if needed.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Syslog
-
Centralized Log Management: Use the Syslog plugin to aggregate log messages from multiple servers into a central logging system. This setup can help in monitoring overall system health, troubleshooting issues effectively, and maintaining audit trails by collecting syslog data from different sources.
-
Real-Time Alerting: Integrate the Syslog plugin with alerting tools to trigger real-time notifications when specific log patterns or errors are detected. For example, if a critical system error appears in the logs, an alert can be sent to the operations team, minimizing downtime and performing proactive maintenance.
-
Security Monitoring: Leverage the Syslog plugin for security monitoring by capturing logs from firewalls, intrusion detection systems, and other security devices. This logging capability enhances security visibility and helps in investigating potentially malicious activities by analyzing the captured syslog data.
-
Application Performance Tracking: Utilize the Syslog plugin to monitor application performance by collecting logs from various applications. This integration helps in analyzing the application’s behavior and performance trends, thus aiding in optimizing application processes and ensuring smoother operation.
Microsoft SQL Server
-
Enterprise Application Monitoring: Leverage the plugin to capture detailed performance metrics from enterprise applications running on SQL Server. This setup allows IT teams to analyze system performance, track transaction times, and identify bottlenecks across complex, multi-tier environments.
-
Dynamic Infrastructure Auditing: Deploy the plugin to create a dynamic audit log of infrastructure changes and performance metrics in SQL Server. This use case is ideal for organizations that require real-time monitoring and historical analysis of system performance for compliance and optimization.
-
Automated Performance Benchmarking: Use the plugin to continuously record and analyze performance metrics of SQL Server databases. This enables automated benchmarking, where historical data is compared against current performance, helping to quickly identify anomalies or degradation in service.
-
Integrated DevOps Dashboards: Integrate the plugin with DevOps monitoring tools to feed real-time metrics from SQL Server into centralized dashboards. This provides a holistic view of application health, allowing teams to correlate SQL Server performance with application-level events for faster troubleshooting and proactive maintenance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration