Syslog and Google BigQuery Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Syslog and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Syslog plugin enables the collection of syslog messages from various sources using standard networking protocols. This functionality is critical for environments where systems need to be monitored and logged efficiently.

The Google BigQuery plugin allows Telegraf to write metrics to Google Cloud BigQuery, enabling robust data analytics capabilities for telemetry data.

Integration details

Syslog

The Syslog plugin for Telegraf captures syslog messages transmitted over various protocols such as TCP, UDP, and TLS. It supports both RFC 5424 (the newer syslog protocol) and the older RFC 3164 (BSD syslog protocol). This plugin operates as a service input, effectively starting a service that listens for incoming syslog messages. Unlike traditional plugins, service inputs may not function with standard interval settings or CLI options like --once. It includes options for setting network configurations, socket permissions, message handling, and connection handling. Furthermore, the integration with Rsyslog allows forwarding of logging messages, making it a powerful tool for collecting and relaying system logs in real-time, thus seamlessly integrating into monitoring and logging systems.

Google BigQuery

The Google BigQuery plugin for Telegraf enables seamless integration with Google Cloud’s BigQuery service, a popular data warehousing and analytics platform. This plugin facilitates the transfer of metrics collected by Telegraf into BigQuery datasets, making it easier for users to perform analyses and generate insights from their telemetry data. It requires authentication through a service account or user credentials and is designed to handle various data types, ensuring that users can maintain the integrity and accuracy of their metrics as they are stored in BigQuery tables. The configuration options allow for customization around dataset specifications and handling metrics, including the management of hyphens in metric names, which are not supported by BigQuery for streaming inserts. This plugin is particularly useful for organizations leveraging the scalability and powerful query capabilities of BigQuery to analyze large volumes of monitoring data.

Configuration

Syslog

[[inputs.syslog]]
  ## Protocol, address and port to host the syslog receiver.
  ## If no host is specified, then localhost is used.
  ## If no port is specified, 6514 is used (RFC5425#section-4.1).
  ##   ex: server = "tcp://localhost:6514"
  ##       server = "udp://:6514"
  ##       server = "unix:///var/run/telegraf-syslog.sock"
  ## When using tcp, consider using 'tcp4' or 'tcp6' to force the usage of IPv4
  ## or IPV6 respectively. There are cases, where when not specified, a system
  ## may force an IPv4 mapped IPv6 address.
  server = "tcp://127.0.0.1:6514"

  ## Permission for unix sockets (only available on unix sockets)
  ## This setting may not be respected by some platforms. To safely restrict
  ## permissions it is recommended to place the socket into a previously
  ## created directory with the desired permissions.
  ##   ex: socket_mode = "777"
  # socket_mode = ""

  ## Maximum number of concurrent connections (only available on stream sockets like TCP)
  ## Zero means unlimited.
  # max_connections = 0

  ## Read timeout (only available on stream sockets like TCP)
  ## Zero means unlimited.
  # read_timeout = "0s"

  ## Optional TLS configuration (only available on stream sockets like TCP)
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key  = "/etc/telegraf/key.pem"
  ## Enables client authentication if set.
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Maximum socket buffer size (in bytes when no unit specified)
  ## For stream sockets, once the buffer fills up, the sender will start
  ## backing up. For datagram sockets, once the buffer fills up, metrics will
  ## start dropping. Defaults to the OS default.
  # read_buffer_size = "64KiB"

  ## Period between keep alive probes (only applies to TCP sockets)
  ## Zero disables keep alive probes. Defaults to the OS configuration.
  # keep_alive_period = "5m"

  ## Content encoding for message payloads
  ## Can be set to "gzip" for compressed payloads or "identity" for no encoding.
  # content_encoding = "identity"

  ## Maximum size of decoded packet (in bytes when no unit specified)
  # max_decompression_size = "500MB"

  ## Framing technique used for messages transport
  ## Available settings are:
  ##   octet-counting  -- see RFC5425#section-4.3.1 and RFC6587#section-3.4.1
  ##   non-transparent -- see RFC6587#section-3.4.2
  # framing = "octet-counting"

  ## The trailer to be expected in case of non-transparent framing (default = "LF").
  ## Must be one of "LF", or "NUL".
  # trailer = "LF"

  ## Whether to parse in best effort mode or not (default = false).
  ## By default best effort parsing is off.
  # best_effort = false

  ## The RFC standard to use for message parsing
  ## By default RFC5424 is used. RFC3164 only supports UDP transport (no streaming support)
  ## Must be one of "RFC5424", or "RFC3164".
  # syslog_standard = "RFC5424"

  ## Character to prepend to SD-PARAMs (default = "_").
  ## A syslog message can contain multiple parameters and multiple identifiers within structured data section.
  ## Eg., [id1 name1="val1" name2="val2"][id2 name1="val1" nameA="valA"]
  ## For each combination a field is created.
  ## Its name is created concatenating identifier, sdparam_separator, and parameter name.
  # sdparam_separator = "_"

Google BigQuery

# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
  ## Credentials File
  credentials_file = "/path/to/service/account/key.json"

  ## Google Cloud Platform Project
  # project = ""

  ## The namespace for the metric descriptor
  dataset = "telegraf"

  ## Timeout for BigQuery operations.
  # timeout = "5s"

  ## Character to replace hyphens on Metric name
  # replace_hyphen_to = "_"

  ## Write all metrics in a single compact table
  # compact_table = ""
  

Input and output integration examples

Syslog

  1. Centralized Log Management: Use the Syslog plugin to aggregate log messages from multiple servers into a central logging system. This setup can help in monitoring overall system health, troubleshooting issues effectively, and maintaining audit trails by collecting syslog data from different sources.

  2. Real-Time Alerting: Integrate the Syslog plugin with alerting tools to trigger real-time notifications when specific log patterns or errors are detected. For example, if a critical system error appears in the logs, an alert can be sent to the operations team, minimizing downtime and performing proactive maintenance.

  3. Security Monitoring: Leverage the Syslog plugin for security monitoring by capturing logs from firewalls, intrusion detection systems, and other security devices. This logging capability enhances security visibility and helps in investigating potentially malicious activities by analyzing the captured syslog data.

  4. Application Performance Tracking: Utilize the Syslog plugin to monitor application performance by collecting logs from various applications. This integration helps in analyzing the application’s behavior and performance trends, thus aiding in optimizing application processes and ensuring smoother operation.

Google BigQuery

  1. Real-Time Analytics Dashboard: Leverage the Google BigQuery plugin to feed live metrics into a custom analytics dashboard hosted on Google Cloud. This setup would allow teams to visualize performance data in real-time, providing insights into system health and usage patterns. By using BigQuery’s querying capabilities, users can easily create tailored reports and dashboards to meet their specific needs, thus enhancing decision-making processes.

  2. Cost Management and Optimization Analysis: Utilize the plugin to automatically send cost-related metrics from various services into BigQuery. Analyzing this data can help businesses identify unnecessary expenses and optimize resource usage. By performing aggregation and transformation queries in BigQuery, organizations can create accurate forecasts and manage their cloud spending efficiently.

  3. Cross-Team Collaboration on Monitoring Data: Enable different teams within an organization to share their monitoring data using BigQuery. With the help of this Telegraf plugin, teams can push their metrics to a central BigQuery instance, fostering collaboration. This data-sharing approach encourages best practices and cross-functional awareness, leading to collective improvements in system performance and reliability.

  4. Historical Analysis for Capacity Planning: By using the BigQuery plugin, companies can collect and store historical metrics data essential for capacity planning. Analyzing trends over time can help anticipate system needs and scale infrastructure proactively. Organizations can create time-series analyses and identify patterns that inform their long-term strategic decisions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration