Suricata and Cortex Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin reports internal performance counters of the Suricata IDS/IPS engine and processes the incoming data to fit Telegraf’s format.
This plugin enables Telegraf to send metrics to Cortex using the Prometheus remote write protocol, allowing seamless ingestion into Cortex’s scalable, multi-tenant time series storage.
Integration details
Suricata
The Suricata plugin captures and reports internal performance metrics from the Suricata IDS/IPS engine, which includes a wide range of statistics such as traffic volume, memory usage, uptime, and counters for flows and alerts. This plugin listens for JSON-formatted log outputs from Suricata, allowing it to parse and format the data for integration with Telegraf. It operates as a service input plugin, meaning it actively waits for metrics or events from Suricata rather than collecting metrics at predefined intervals. The plugin supports configurations for different metrics versions allowing for enhanced flexibility and detailed data gathering.
Cortex
With Telegraf’s HTTP output plugin and the prometheusremotewrite
data format you can send metrics directly to Cortex, a horizontally scalable, long-term storage backend for Prometheus. Cortex supports multi-tenancy and accepts remote write requests using the Prometheus protobuf format. By using Telegraf as the collection agent and Remote Write as the transport mechanism, organizations can extend observability into sources not natively supported by Prometheus—such as Windows hosts, SNMP-enabled devices, or custom application metrics—while leveraging Cortex’s high-availability and long-retention capabilities.
Configuration
Suricata
[[inputs.suricata]]
## Source
## Data sink for Suricata stats log. This is expected to be a filename of a
## unix socket to be created for listening.
# source = "/var/run/suricata-stats.sock"
## Delimiter
## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
## "detect_alert" when delimiter is "_".
# delimiter = "_"
## Metric version
## Version 1 only collects stats and optionally will look for alerts if
## the configuration setting alerts is set to true.
## Version 2 parses any event type message by default and produced metrics
## under a single metric name using a tag to differentiate between event
## types. The timestamp for the message is applied to the generated metric.
## Additional tags and fields are included as well.
# version = "1"
## Alerts
## In metric version 1, only status is captured by default, alerts must be
## turned on with this configuration option. This option does not apply for
## metric version 2.
# alerts = false
Cortex
[[outputs.http]]
## Cortex Remote Write endpoint
url = "http://cortex.example.com/api/v1/push"
## Use POST to send data
method = "POST"
## Send metrics using Prometheus remote write format
data_format = "prometheusremotewrite"
## Optional HTTP headers for authentication
# [outputs.http.headers]
# X-Scope-OrgID = "your-tenant-id"
# Authorization = "Bearer YOUR_API_TOKEN"
## Optional TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
## Request timeout
timeout = "10s"
Input and output integration examples
Suricata
-
Network Traffic Analysis: Utilize the Suricata plugin to track detailed metrics about network intrusion attempts and performance, aiding in real-time threat detection and response. By visualizing captured alerts and flow statistics, security teams can quickly pinpoint vulnerabilities and mitigate risks.
-
Performance Monitoring Dashboard: Create a dashboard using the Suricata Telegraf plugin metrics to monitor the health and performance of the IDS/IPS engine. This use case provides an overview of memory usage, captured packets, and alert statistics, allowing teams to maintain optimal operating conditions.
-
Automated Security Reporting: Leverage the plugin to generate regular reports on alert statistics and traffic patterns, helping security analysts to identify long-term trends and prepare strategic defense initiatives. Automated reports also ensure that the security posture of the network is continually assessed.
-
Real-time Alert Handling: Integrate Suricata’s alert metrics within a broader incident response automation framework. By incorporating the inputs from the Suricata plugin, organizations can develop smart triggers for alerting and automated response workflows that enhance reaction times to potential threats.
Cortex
-
Unified Multi-Tenant Monitoring: Use Telegraf to collect metrics from different teams or environments and push them to Cortex with separate
X-Scope-OrgID
headers. This enables isolated data ingestion and querying per tenant, ideal for managed services and platform teams. -
Extending Prometheus Coverage to Edge Devices: Deploy Telegraf on edge or IoT devices to collect system metrics and send them to a centralized Cortex cluster. This approach ensures consistent observability even for environments without local Prometheus scrapers.
-
Global Service Observability with Federated Tenants: Aggregate metrics from global infrastructure by configuring Telegraf agents to push data into regional Cortex clusters, each tagged with tenant identifiers. Cortex handles deduplication and centralized access across regions.
-
Custom App Telemetry Pipeline: Collect app-specific telemetry via Telegraf’s
exec
orhttp
input plugins and forward it to Cortex. This allows DevOps teams to monitor app-specific KPIs in a scalable, query-efficient format while keeping metrics logically grouped by tenant or service.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration