Supervisor and Splunk Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Supervisor and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers information about processes running under Supervisor using the XML-RPC API.

This output plugin facilitates direct streaming of Telegraf collected metrics into Splunk via the HTTP Event Collector, enabling easy integration with Splunk’s powerful analytics platform.

Integration details

Supervisor

The Supervisor plugin for Telegraf is designed to collect metrics about processes managed by the Supervisor process control system using its XML-RPC API. The plugin is able to track various metrics, including process states and uptime, and provides options for configuring which metrics to collect through include or exclude lists. This integration is particularly useful for monitoring applications running under Supervisor, providing insights into their operational status and performance metrics. A minimum tested Supervisor version is 3.3.2, and it is recommended to secure the HTTP server with basic authentication for better security.

Splunk

Use Telegraf to easily collect and aggregate metrics from many different sources and send them to Splunk. Utilizing the HTTP output plugin combined with the specialized Splunk metrics serializer, this configuration ensures efficient data ingestion into Splunk’s metrics indexes. The HEC is an advanced mechanism provided by Splunk designed to reliably collect data at scale via HTTP or HTTPS, providing critical capabilities for security, monitoring, and analytics workloads. Telegraf’s integration with Splunk HEC streamlines operations by leveraging standard HTTP protocols, built-in authentication, and structured data serialization, optimizing metrics ingestion and enabling immediate actionable insights.

Configuration

Supervisor

[[inputs.supervisor]]
  ## Url of supervisor's XML-RPC endpoint if basic auth enabled in supervisor http server,
  ## than you have to add credentials to url (ex. http://login:pass@localhost:9001/RPC2)
  # url="http://localhost:9001/RPC2"
  ## With settings below you can manage gathering additional information about processes
  ## If both of them empty, then all additional information will be collected.
  ## Currently supported supported additional metrics are: pid, rc
  # metrics_include = []
  # metrics_exclude = ["pid", "rc"]

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

Input and output integration examples

Supervisor

  1. Centralized Monitoring Dashboard: Implement this plugin to feed Supervisor metrics directly into a centralized monitoring dashboard, allowing teams to visualize the health and performance of their applications in real-time. This integration enables quick identification of issues, helps track service performance over time, and aids in capacity planning based on observed trends.

  2. Alerting for Process Failures: Utilize the metrics gathered by the Supervisor plugin to create an alerting mechanism that notifies engineers when critical processes go down or enter a fatal state. By setting thresholds in your monitoring system, teams can respond proactively to potential problems, minimizing downtime and ensuring system reliability.

  3. Historical Analysis of Process States: Store the metrics collected over time to analyze process state changes and patterns. By examining historical data, teams can identify recurring issues, track the impact of deployment changes, and optimize resource allocation based on process trends, leading to improved overall system performance.

  4. Integration with Incident Management Systems: Configure the Supervisor plugin to automatically send alerts to incident management systems like PagerDuty or OpsGenie when a process reaches a critical state. This integration streamlines the incident response process, ensuring that the right team members are notified promptly and can take action without delay.

Splunk

  1. Real-Time Security Analytics: Utilize this plugin to stream security-related metrics from various applications into Splunk in real-time. Organizations can detect threats instantly by correlating data streams across systems, significantly reducing detection and response times.

  2. Multi-Cloud Infrastructure Monitoring: Integrate Telegraf to consolidate metrics from multi-cloud environments directly into Splunk, enabling comprehensive visibility and operational intelligence. This unified monitoring allows teams to detect performance issues quickly and streamline cloud resource management.

  3. Dynamic Capacity Planning: Deploy the plugin to continuously push resource metrics from container orchestration platforms (like Kubernetes) into Splunk. Leveraging Splunk’s analytics capabilities, teams can automate predictive scaling and resource allocation, avoiding resource bottlenecks and minimizing costs.

  4. Automated Incident Response Workflows: Combine this plugin with Splunk’s alerting system to create automated incident response workflows. Metrics collected by Telegraf trigger real-time alerts and automated remediation scripts, ensuring rapid resolution and maintaining high system availability.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration