Supervisor and Datadog Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers information about processes running under Supervisor using the XML-RPC API.
The Datadog Telegraf Plugin enables the submission of metrics to the Datadog Metrics API, facilitating efficient monitoring and data analysis through a reliable metric ingestion process.
Integration details
Supervisor
The Supervisor plugin for Telegraf is designed to collect metrics about processes managed by the Supervisor process control system using its XML-RPC API. The plugin is able to track various metrics, including process states and uptime, and provides options for configuring which metrics to collect through include or exclude lists. This integration is particularly useful for monitoring applications running under Supervisor, providing insights into their operational status and performance metrics. A minimum tested Supervisor version is 3.3.2, and it is recommended to secure the HTTP server with basic authentication for better security.
Datadog
This plugin writes to the Datadog Metrics API, enabling users to send metrics for monitoring and performance analysis. By utilizing the Datadog API key, users can configure the plugin to establish a connection with Datadog’s v1 API. The plugin supports various configuration options including connection timeouts, HTTP proxy settings, and data compression methods, ensuring adaptability to different deployment environments. The ability to transform count metrics into rates enhances the integration of Telegraf with Datadog agents, particularly beneficial for applications that rely on real-time performance metrics.
Configuration
Supervisor
[[inputs.supervisor]]
## Url of supervisor's XML-RPC endpoint if basic auth enabled in supervisor http server,
## than you have to add credentials to url (ex. http://login:pass@localhost:9001/RPC2)
# url="http://localhost:9001/RPC2"
## With settings below you can manage gathering additional information about processes
## If both of them empty, then all additional information will be collected.
## Currently supported supported additional metrics are: pid, rc
# metrics_include = []
# metrics_exclude = ["pid", "rc"]
Datadog
[[outputs.datadog]]
## Datadog API key
apikey = "my-secret-key"
## Connection timeout.
# timeout = "5s"
## Write URL override; useful for debugging.
## This plugin only supports the v1 API currently due to the authentication
## method used.
# url = "https://app.datadoghq.com/api/v1/series"
## Set http_proxy
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
## Override the default (none) compression used to send data.
## Supports: "zlib", "none"
# compression = "none"
## When non-zero, converts count metrics submitted by inputs.statsd
## into rate, while dividing the metric value by this number.
## Note that in order for metrics to be submitted simultaenously alongside
## a Datadog agent, rate_interval has to match the interval used by the
## agent - which defaults to 10s
# rate_interval = 0s
Input and output integration examples
Supervisor
-
Centralized Monitoring Dashboard: Implement this plugin to feed Supervisor metrics directly into a centralized monitoring dashboard, allowing teams to visualize the health and performance of their applications in real-time. This integration enables quick identification of issues, helps track service performance over time, and aids in capacity planning based on observed trends.
-
Alerting for Process Failures: Utilize the metrics gathered by the Supervisor plugin to create an alerting mechanism that notifies engineers when critical processes go down or enter a fatal state. By setting thresholds in your monitoring system, teams can respond proactively to potential problems, minimizing downtime and ensuring system reliability.
-
Historical Analysis of Process States: Store the metrics collected over time to analyze process state changes and patterns. By examining historical data, teams can identify recurring issues, track the impact of deployment changes, and optimize resource allocation based on process trends, leading to improved overall system performance.
-
Integration with Incident Management Systems: Configure the Supervisor plugin to automatically send alerts to incident management systems like PagerDuty or OpsGenie when a process reaches a critical state. This integration streamlines the incident response process, ensuring that the right team members are notified promptly and can take action without delay.
Datadog
-
Real-Time Infrastructure Monitoring: Use the Datadog plugin to monitor server metrics in real-time by sending CPU usage and memory statistics directly to Datadog. This integration allows IT teams to visualize and analyze system performance metrics in a centralized dashboard, enabling proactive response to any emerging issues, such as resource bottlenecks or server overloads.
-
Application Performance Tracking: Leverage this plugin to submit application-specific metrics, such as request counts and error rates, to Datadog. By integrating with application monitoring tools, teams can correlate infrastructure metrics with application performance, providing insights that enable them to optimize code performance and improve user experience.
-
Anomaly Detection in Metrics: Configure the Datadog plugin to send metrics that can trigger alerts and notifications based on unusual patterns detected by Datadog’s machine learning features. This proactive monitoring helps teams swiftly react to potential outages or performance degradation before customers are impacted.
-
Integrating with Cloud Services: By utilizing the Datadog plugin to send metrics from cloud resources, IT teams can gain visibility into cloud application performance. Monitoring metrics like latency and error rates helps with ensuring service-level agreements (SLAs) are met and also assists in optimizing resource allocation across cloud environments.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration