StatsD and OpenTSDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider StatsD and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The StatsD input plugin captures metrics from a StatsD server by running a listener service in the background, allowing for comprehensive performance monitoring and metric aggregation.

The OpenTSDB plugin facilitates the integration of Telegraf with OpenTSDB, allowing users to push time-series metrics to an OpenTSDB backend seamlessly.

Integration details

StatsD

The StatsD input plugin is designed to gather metrics from a StatsD server by running a backgrounded StatsD listener service while Telegraf is active. This plugin leverages the format of the StatsD messages as established by the original Etsy implementation, which allows for various types of metrics including gauges, counters, sets, timings, histograms, and distributions. The capabilities of the StatsD plugin extend to parsing tags and extending the standard protocol with features that accommodate InfluxDB’s tagging system. It can handle messages sent via different protocols (UDP or TCP), manage multiple metric metrics effectively, and offers advanced configurations for optimal metric handling such as percentiles calculation and data transformation templates. This flexibility empowers users to track application performance comprehensively, making it an essential tool for robust monitoring setups.

OpenTSDB

The OpenTSDB plugin is designed to send metrics to an OpenTSDB instance using either the telnet or HTTP mode. With the introduction of OpenTSDB 2.0, the recommended method for sending metrics is via the HTTP API, which allows for batch processing of metrics by configuring the ‘http_batch_size’. The plugin supports several configuration options including metrics prefixing, server host and port specification, URI path customization for reverse proxies, and debug options for diagnosing communication issues with OpenTSDB. This plugin is particularly useful in scenarios where time series data is generated and needs to be efficiently stored in a scalable time series database like OpenTSDB, making it suitable for a wide range of monitoring and analytics applications.

Configuration

StatsD

[[inputs.statsd]]
  ## Protocol, must be "tcp", "udp4", "udp6" or "udp" (default=udp)
  protocol = "udp"

  ## MaxTCPConnection - applicable when protocol is set to tcp (default=250)
  max_tcp_connections = 250

  ## Enable TCP keep alive probes (default=false)
  tcp_keep_alive = false

  ## Specifies the keep-alive period for an active network connection.
  ## Only applies to TCP sockets and will be ignored if tcp_keep_alive is false.
  ## Defaults to the OS configuration.
  # tcp_keep_alive_period = "2h"

  ## Address and port to host UDP listener on
  service_address = ":8125"

  ## The following configuration options control when telegraf clears it's cache
  ## of previous values. If set to false, then telegraf will only clear it's
  ## cache when the daemon is restarted.
  ## Reset gauges every interval (default=true)
  delete_gauges = true
  ## Reset counters every interval (default=true)
  delete_counters = true
  ## Reset sets every interval (default=true)
  delete_sets = true
  ## Reset timings & histograms every interval (default=true)
  delete_timings = true

  ## Enable aggregation temporality adds temporality=delta or temporality=commulative tag, and
  ## start_time field, which adds the start time of the metric accumulation.
  ## You should use this when using OpenTelemetry output.
  # enable_aggregation_temporality = false

  ## Percentiles to calculate for timing & histogram stats.
  percentiles = [50.0, 90.0, 99.0, 99.9, 99.95, 100.0]

  ## separator to use between elements of a statsd metric
  metric_separator = "_"

  ## Parses tags in the datadog statsd format
  ## http://docs.datadoghq.com/guides/dogstatsd/
  ## deprecated in 1.10; use datadog_extensions option instead
  parse_data_dog_tags = false

  ## Parses extensions to statsd in the datadog statsd format
  ## currently supports metrics and datadog tags.
  ## http://docs.datadoghq.com/guides/dogstatsd/
  datadog_extensions = false

  ## Parses distributions metric as specified in the datadog statsd format
  ## https://docs.datadoghq.com/developers/metrics/types/?tab=distribution#definition
  datadog_distributions = false

  ## Keep or drop the container id as tag. Included as optional field
  ## in DogStatsD protocol v1.2 if source is running in Kubernetes
  ## https://docs.datadoghq.com/developers/dogstatsd/datagram_shell/?tab=metrics#dogstatsd-protocol-v12
  datadog_keep_container_tag = false

  ## Statsd data translation templates, more info can be read here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/TEMPLATE_PATTERN.md
  # templates = [
  #     "cpu.* measurement*"
  # ]

  ## Number of UDP messages allowed to queue up, once filled,
  ## the statsd server will start dropping packets
  allowed_pending_messages = 10000

  ## Number of worker threads used to parse the incoming messages.
  # number_workers_threads = 5

  ## Number of timing/histogram values to track per-measurement in the
  ## calculation of percentiles. Raising this limit increases the accuracy
  ## of percentiles but also increases the memory usage and cpu time.
  percentile_limit = 1000

  ## Maximum socket buffer size in bytes, once the buffer fills up, metrics
  ## will start dropping.  Defaults to the OS default.
  # read_buffer_size = 65535

  ## Max duration (TTL) for each metric to stay cached/reported without being updated.
  # max_ttl = "10h"

  ## Sanitize name method
  ## By default, telegraf will pass names directly as they are received.
  ## However, upstream statsd now does sanitization of names which can be
  ## enabled by using the "upstream" method option. This option will a) replace
  ## white space with '_', replace '/' with '-', and remove characters not
  ## matching 'a-zA-Z_\-0-9\.;='.
  #sanitize_name_method = ""

  ## Replace dots (.) with underscore (_) and dashes (-) with
  ## double underscore (__) in metric names.
  # convert_names = false

  ## Convert all numeric counters to float
  ## Enabling this would ensure that both counters and guages are both emitted
  ## as floats.
  # float_counters = false

OpenTSDB

[[outputs.opentsdb]]
  ## prefix for metrics keys
  prefix = "my.specific.prefix."

  ## DNS name of the OpenTSDB server
  ## Using "opentsdb.example.com" or "tcp://opentsdb.example.com" will use the
  ## telnet API. "http://opentsdb.example.com" will use the Http API.
  host = "opentsdb.example.com"

  ## Port of the OpenTSDB server
  port = 4242

  ## Number of data points to send to OpenTSDB in Http requests.
  ## Not used with telnet API.
  http_batch_size = 50

  ## URI Path for Http requests to OpenTSDB.
  ## Used in cases where OpenTSDB is located behind a reverse proxy.
  http_path = "/api/put"

  ## Debug true - Prints OpenTSDB communication
  debug = false

  ## Separator separates measurement name from field
  separator = "_"

Input and output integration examples

StatsD

  1. Real-time Application Performance Monitoring: Utilize the StatsD input plugin to monitor application performance metrics in real-time. By configuring your application to send various metrics to a StatsD server, teams can leverage this plugin to analyze performance bottlenecks, track user activity, and ensure resource optimization dynamically. The combination of historical and real-time metrics allows for proactive troubleshooting and enhances the responsiveness of issue resolution processes.

  2. Tracking User Engagement Metrics in Web Applications: Use the StatsD plugin to gather user engagement statistics, such as page views, click events, and interaction times. By sending these metrics to the StatsD server, businesses can derive valuable insights into user behavior, enabling them to make data-driven decisions to improve user experience and interface design based on quantitative feedback. This can significantly enhance the effectiveness of marketing strategies and product development efforts.

  3. Infrastructure Health Monitoring: Deploy the StatsD plugin to monitor the health of your server infrastructure by tracking metrics such as resource utilization, server response times, and network performance. With this setup, DevOps teams can gain detailed visibility into system performance, effectively anticipating issues before they escalate. This enables a proactive approach to infrastructure management, minimizing downtimes and ensuring optimal service delivery.

  4. Creating Comprehensive Service Dashboards: Integrate StatsD with visualization tools to create comprehensive dashboards that reflect the status and health of services across an architecture. For instance, combining data from multiple services logged through StatsD can transform raw metrics into actionable insights, showcasing system performance trends over time. This capability empowers stakeholders to maintain oversight and drive decisions based on visualized data sets, enhancing overall operational transparency.

OpenTSDB

  1. Real-time Infrastructure Monitoring: Utilize the OpenTSDB plugin to collect and store metrics from various infrastructure components. By configuring the plugin to push metrics to OpenTSDB, organizations can have a centralized view of their infrastructure health and performance over time.

  2. Custom Application Metrics Tracking: Integrate the OpenTSDB plugin into custom applications to track key performance indicators (KPIs) such as response times, error rates, and user interactions. This setup allows developers and product teams to visualize application performance trends and make data-driven decisions.

  3. Automated Anomaly Detection: Leverage the plugin in conjunction with machine learning algorithms to automatically detect anomalies in time-series data sent to OpenTSDB. By continuously monitoring the incoming metrics, the system can train models that alert users to potential issues before they affect application performance.

  4. Historical Data Analysis: Use the OpenTSDB plugin to store and analyze historical performance data for capacity planning and trend analysis. This provides valuable insights into system behavior over time, helping teams to understand usage patterns and prepare for future growth.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration