Google Cloud Stackdriver and Snowflake Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin enables the collection of monitoring data from Google Cloud services through the Stackdriver Monitoring API. It is designed to help users monitor their cloud infrastructure’s performance and health by gathering relevant metrics.
Telegraf’s SQL plugin allows seamless metric storage in SQL databases. When configured for Snowflake, it employs a specialized DSN format and dynamic table creation to map metrics to the appropriate schema.
Integration details
Google Cloud Stackdriver
The Stackdriver Telegraf plugin allows users to query timeseries data from Google Cloud Monitoring using the Cloud Monitoring API v3. With this plugin, users can easily integrate Google Cloud monitoring metrics into their monitoring stacks. This API provides a wealth of insights about resources and applications running in Google Cloud, including performance, uptime, and operational metrics. The plugin supports various configuration options to filter and refine the data retrieved, enabling users to customize their monitoring setup according to their specific needs. This integration facilitates a smoother experience in maintaining the health and performance of cloud resources and assists teams in making data-driven decisions based on historical and current performance statistics.
Snowflake
Telegraf’s SQL plugin is engineered to dynamically write metrics into an SQL database by creating tables and columns based on the incoming data. When configured for Snowflake, it employs the gosnowflake driver, which uses a DSN that encapsulates credentials, account details, and database configuration in a compact format. This setup allows for the automatic generation of tables where each metric is recorded with precise timestamps, thereby ensuring detailed historical tracking. Although the integration is considered experimental, it leverages Snowflake’s powerful data warehousing capabilities, making it suitable for scalable, cloud-based analytics and reporting solutions.
Configuration
Google Cloud Stackdriver
[[inputs.stackdriver]]
## GCP Project
project = "erudite-bloom-151019"
## Include timeseries that start with the given metric type.
metric_type_prefix_include = [
"compute.googleapis.com/",
]
## Exclude timeseries that start with the given metric type.
# metric_type_prefix_exclude = []
## Most metrics are updated no more than once per minute; it is recommended
## to override the agent level interval with a value of 1m or greater.
interval = "1m"
## Maximum number of API calls to make per second. The quota for accounts
## varies, it can be viewed on the API dashboard:
## https://cloud.google.com/monitoring/quotas#quotas_and_limits
# rate_limit = 14
## The delay and window options control the number of points selected on
## each gather. When set, metrics are gathered between:
## start: now() - delay - window
## end: now() - delay
#
## Collection delay; if set too low metrics may not yet be available.
# delay = "5m"
#
## If unset, the window will start at 1m and be updated dynamically to span
## the time between calls (approximately the length of the plugin interval).
# window = "1m"
## TTL for cached list of metric types. This is the maximum amount of time
## it may take to discover new metrics.
# cache_ttl = "1h"
## If true, raw bucket counts are collected for distribution value types.
## For a more lightweight collection, you may wish to disable and use
## distribution_aggregation_aligners instead.
# gather_raw_distribution_buckets = true
## Aggregate functions to be used for metrics whose value type is
## distribution. These aggregate values are recorded in in addition to raw
## bucket counts; if they are enabled.
##
## For a list of aligner strings see:
## https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
# distribution_aggregation_aligners = [
# "ALIGN_PERCENTILE_99",
# "ALIGN_PERCENTILE_95",
# "ALIGN_PERCENTILE_50",
# ]
## Filters can be added to reduce the number of time series matched. All
## functions are supported: starts_with, ends_with, has_substring, and
## one_of. Only the '=' operator is supported.
##
## The logical operators when combining filters are defined statically using
## the following values:
## filter ::= {AND AND AND }
## resource_labels ::= {OR }
## metric_labels ::= {OR }
## user_labels ::= {OR }
## system_labels ::= {OR }
##
## For more details, see https://cloud.google.com/monitoring/api/v3/filters
#
## Resource labels refine the time series selection with the following expression:
## resource.labels. =
# [[inputs.stackdriver.filter.resource_labels]]
# key = "instance_name"
# value = 'starts_with("localhost")'
#
## Metric labels refine the time series selection with the following expression:
## metric.labels. =
# [[inputs.stackdriver.filter.metric_labels]]
# key = "device_name"
# value = 'one_of("sda", "sdb")'
#
## User labels refine the time series selection with the following expression:
## metadata.user_labels."" =
# [[inputs.stackdriver.filter.user_labels]]
# key = "environment"
# value = 'one_of("prod", "staging")'
#
## System labels refine the time series selection with the following expression:
## metadata.system_labels."" =
# [[inputs.stackdriver.filter.system_labels]]
# key = "machine_type"
# value = 'starts_with("e2-")'
</code></pre>
Snowflake
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "snowflake"
## Data source name
## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
## Example DSN: "username:password@account/warehouse/db/schema"
data_source_name = "username:password@account/warehouse/db/schema"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Google Cloud Stackdriver
-
Integrating Cloud Metrics into Custom Dashboards: With this plugin, teams can funnel metrics from Google Cloud into personalized dashboards, allowing for real-time monitoring of application performance and resource utilization. By customizing the visual representation of cloud metrics, operations teams can easily identify trends and anomalies, enabling proactive management before issues escalate.
-
Automated Alerts and Analysis: Users can set up automated alerting mechanisms leveraging the plugin’s metrics to track resource thresholds. This capability allows teams to act swiftly in response to performance degradation or outages by providing immediate notifications, thus reducing the mean time to recovery and ensuring continued operational efficiency.
-
Cross-Platform Resource Comparison: The plugin can be used to draw metrics from various Google Cloud services and compare them with on-premise resources. This cross-platform visibility helps organizations make informed decisions about resource allocation and scaling strategies, as well as optimize cloud spending versus on-premise infrastructure.
-
Historical Data Analysis for Capacity Planning: By collecting historical metrics over time, the plugin empowers teams to conduct thorough capacity planning. Understanding past performance trends facilitates accurate forecasting for resource needs, leading to better budgeting and investment strategies.
Snowflake
-
Cloud-Based Data Lake Integration: Utilize the plugin to stream real-time metrics from various sources into Snowflake, enabling the creation of a centralized data lake. This integration supports complex analytics and machine learning workflows on cloud data.
-
Dynamic Business Intelligence Dashboards: Leverage the plugin to automatically generate tables from incoming metrics and feed them into BI tools. This allows businesses to create dynamic dashboards that visualize performance trends and operational insights without manual schema management.
-
Scalable IoT Analytics: Deploy the plugin to capture high-frequency data from IoT devices into Snowflake. This use case facilitates the aggregation and analysis of sensor data, enabling predictive maintenance and real-time monitoring at scale.
-
Historical Trend Analysis for Compliance: Use the plugin to log and archive detailed metric data in Snowflake, which can then be queried for long-term trend analysis and compliance reporting. This setup ensures that organizations can maintain a robust audit trail and perform forensic analysis if needed.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration