Google Cloud Stackdriver and Loki Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Stackdriver and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin enables the collection of monitoring data from Google Cloud services through the Stackdriver Monitoring API. It is designed to help users monitor their cloud infrastructure’s performance and health by gathering relevant metrics.

The Loki plugin allows users to send logs to Loki for aggregation and querying, leveraging Loki’s efficient storage capabilities.

Integration details

Google Cloud Stackdriver

The Stackdriver Telegraf plugin allows users to query timeseries data from Google Cloud Monitoring using the Cloud Monitoring API v3. With this plugin, users can easily integrate Google Cloud monitoring metrics into their monitoring stacks. This API provides a wealth of insights about resources and applications running in Google Cloud, including performance, uptime, and operational metrics. The plugin supports various configuration options to filter and refine the data retrieved, enabling users to customize their monitoring setup according to their specific needs. This integration facilitates a smoother experience in maintaining the health and performance of cloud resources and assists teams in making data-driven decisions based on historical and current performance statistics.

Loki

This Loki plugin integrates with Grafana Loki, a powerful log aggregation system. By sending logs in a format compatible with Loki, this plugin allows for efficient storage and querying of logs. Each log entry is structured in a key-value format where keys represent the field names and values represent the corresponding log information. The sorting of logs by timestamp ensures that the log streams maintain chronological order when queried through Loki. This plugin’s support for secrets makes it easier to manage authentication parameters securely, while options for HTTP headers, gzip encoding, and TLS configuration enhance the adaptability and security of log transmission, fitting various deployment needs.

Configuration

Google Cloud Stackdriver

[[inputs.stackdriver]]
  ## GCP Project
  project = "erudite-bloom-151019"

  ## Include timeseries that start with the given metric type.
  metric_type_prefix_include = [
    "compute.googleapis.com/",
  ]

  ## Exclude timeseries that start with the given metric type.
  # metric_type_prefix_exclude = []

  ## Most metrics are updated no more than once per minute; it is recommended
  ## to override the agent level interval with a value of 1m or greater.
  interval = "1m"

  ## Maximum number of API calls to make per second.  The quota for accounts
  ## varies, it can be viewed on the API dashboard:
  ##   https://cloud.google.com/monitoring/quotas#quotas_and_limits
  # rate_limit = 14

  ## The delay and window options control the number of points selected on
  ## each gather.  When set, metrics are gathered between:
  ##   start: now() - delay - window
  ##   end:   now() - delay
  #
  ## Collection delay; if set too low metrics may not yet be available.
  # delay = "5m"
  #
  ## If unset, the window will start at 1m and be updated dynamically to span
  ## the time between calls (approximately the length of the plugin interval).
  # window = "1m"

  ## TTL for cached list of metric types.  This is the maximum amount of time
  ## it may take to discover new metrics.
  # cache_ttl = "1h"

  ## If true, raw bucket counts are collected for distribution value types.
  ## For a more lightweight collection, you may wish to disable and use
  ## distribution_aggregation_aligners instead.
  # gather_raw_distribution_buckets = true

  ## Aggregate functions to be used for metrics whose value type is
  ## distribution.  These aggregate values are recorded in in addition to raw
  ## bucket counts; if they are enabled.
  ##
  ## For a list of aligner strings see:
  ##   https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
  # distribution_aggregation_aligners = [
  #  "ALIGN_PERCENTILE_99",
  #  "ALIGN_PERCENTILE_95",
  #  "ALIGN_PERCENTILE_50",
  # ]

  ## Filters can be added to reduce the number of time series matched.  All
  ## functions are supported: starts_with, ends_with, has_substring, and
  ## one_of.  Only the '=' operator is supported.
  ##
  ## The logical operators when combining filters are defined statically using
  ## the following values:
  ##   filter ::=  {AND  AND  AND }
  ##   resource_labels ::=  {OR }
  ##   metric_labels ::=  {OR }
  ##   user_labels ::=  {OR }
  ##   system_labels ::=  {OR }
  ##
  ## For more details, see https://cloud.google.com/monitoring/api/v3/filters
  #
  ## Resource labels refine the time series selection with the following expression:
  ##   resource.labels. = 
  # [[inputs.stackdriver.filter.resource_labels]]
  #   key = "instance_name"
  #   value = 'starts_with("localhost")'
  #
  ## Metric labels refine the time series selection with the following expression:
  ##   metric.labels. = 
  #  [[inputs.stackdriver.filter.metric_labels]]
  #    key = "device_name"
  #    value = 'one_of("sda", "sdb")'
  #
  ## User labels refine the time series selection with the following expression:
  ##   metadata.user_labels."" = 
  #  [[inputs.stackdriver.filter.user_labels]]
  #    key = "environment"
  #    value = 'one_of("prod", "staging")'
  #
  ## System labels refine the time series selection with the following expression:
  ##   metadata.system_labels."" = 
  #  [[inputs.stackdriver.filter.system_labels]]
  #    key = "machine_type"
  #    value = 'starts_with("e2-")'
</code></pre>

Loki

[[outputs.loki]]
  ## The domain of Loki
  domain = "https://loki.domain.tld"

  ## Endpoint to write api
  # endpoint = "/loki/api/v1/push"

  ## Connection timeout, defaults to "5s" if not set.
  # timeout = "5s"

  ## Basic auth credential
  # username = "loki"
  # password = "pass"

  ## Additional HTTP headers
  # http_headers = {"X-Scope-OrgID" = "1"}

  ## If the request must be gzip encoded
  # gzip_request = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Sanitize Tag Names
  ## If true, all tag names will have invalid characters replaced with
  ## underscores that do not match the regex: ^[a-zA-Z_:][a-zA-Z0-9_:]*.
  # sanitize_label_names = false

  ## Metric Name Label
  ## Label to use for the metric name to when sending metrics. If set to an
  ## empty string, this will not add the label. This is NOT suggested as there
  ## is no way to differentiate between multiple metrics.
  # metric_name_label = "__name"

Input and output integration examples

Google Cloud Stackdriver

  1. Integrating Cloud Metrics into Custom Dashboards: With this plugin, teams can funnel metrics from Google Cloud into personalized dashboards, allowing for real-time monitoring of application performance and resource utilization. By customizing the visual representation of cloud metrics, operations teams can easily identify trends and anomalies, enabling proactive management before issues escalate.

  2. Automated Alerts and Analysis: Users can set up automated alerting mechanisms leveraging the plugin’s metrics to track resource thresholds. This capability allows teams to act swiftly in response to performance degradation or outages by providing immediate notifications, thus reducing the mean time to recovery and ensuring continued operational efficiency.

  3. Cross-Platform Resource Comparison: The plugin can be used to draw metrics from various Google Cloud services and compare them with on-premise resources. This cross-platform visibility helps organizations make informed decisions about resource allocation and scaling strategies, as well as optimize cloud spending versus on-premise infrastructure.

  4. Historical Data Analysis for Capacity Planning: By collecting historical metrics over time, the plugin empowers teams to conduct thorough capacity planning. Understanding past performance trends facilitates accurate forecasting for resource needs, leading to better budgeting and investment strategies.

Loki

  1. Centralized Logging for Microservices: Utilize the Loki plugin to gather logs from multiple microservices running in a Kubernetes cluster. By directing logs to a centralized Loki instance, developers can monitor, search, and analyze logs from all services in one place, facilitating easier troubleshooting and performance monitoring. This setup streamlines operations and supports rapid response to issues across distributed applications.

  2. Real-Time Log Anomaly Detection: Combine Loki with monitoring tools to analyze log outputs in real-time for unusual patterns that could indicate system errors or security threats. Implementing anomaly detection on log streams enables teams to proactively identify and respond to incidents, thereby improving system reliability and enhancing security postures.

  3. Enhanced Log Processing with Gzip Compression: Configure the Loki plugin to utilize gzip compression for log transmission. This approach can reduce bandwidth usage and improve transmission speeds, especially beneficial in environments where network bandwidth may be a constraint. It’s particularly useful for high-volume logging applications where every byte counts and performance is critical.

  4. Multi-Tenancy Support with Custom Headers: Leverage the ability to add custom HTTP headers to segregate logs from different tenants in a multi-tenant application environment. By using the Loki plugin to send different headers for each tenant, operators can ensure proper log management and compliance with data isolation requirements, making it a versatile solution for SaaS applications.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration