Google Cloud Stackdriver and InfluxDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin enables the collection of monitoring data from Google Cloud services through the Stackdriver Monitoring API. It is designed to help users monitor their cloud infrastructure’s performance and health by gathering relevant metrics.

The InfluxDB plugin writes metrics to the InfluxDB HTTP service, allowing for efficient storage and retrieval of time series data.

Integration details

Google Cloud Stackdriver

The Stackdriver Telegraf plugin allows users to query timeseries data from Google Cloud Monitoring using the Cloud Monitoring API v3. With this plugin, users can easily integrate Google Cloud monitoring metrics into their monitoring stacks. This API provides a wealth of insights about resources and applications running in Google Cloud, including performance, uptime, and operational metrics. The plugin supports various configuration options to filter and refine the data retrieved, enabling users to customize their monitoring setup according to their specific needs. This integration facilitates a smoother experience in maintaining the health and performance of cloud resources and assists teams in making data-driven decisions based on historical and current performance statistics.

InfluxDB

The InfluxDB Telegraf plugin serves to send metrics to the InfluxDB HTTP API, facilitating the storage and query of time series data in a structured manner. Integrating seamlessly with InfluxDB, this plugin provides essential features such as token-based authentication and support for multiple InfluxDB cluster nodes, ensuring reliable and scalable data ingestion. Through its configurability, users can specify options like organization, destination buckets, and HTTP-specific settings, providing flexibility to tailor how data is sent and stored. The plugin also supports secret management for sensitive data, which enhances security in production environments. This plugin is particularly beneficial in modern observability stacks where real-time analytics and storage of time series data are crucial.

Configuration

Google Cloud Stackdriver

[[inputs.stackdriver]]
  ## GCP Project
  project = "erudite-bloom-151019"

  ## Include timeseries that start with the given metric type.
  metric_type_prefix_include = [
    "compute.googleapis.com/",
  ]

  ## Exclude timeseries that start with the given metric type.
  # metric_type_prefix_exclude = []

  ## Most metrics are updated no more than once per minute; it is recommended
  ## to override the agent level interval with a value of 1m or greater.
  interval = "1m"

  ## Maximum number of API calls to make per second.  The quota for accounts
  ## varies, it can be viewed on the API dashboard:
  ##   https://cloud.google.com/monitoring/quotas#quotas_and_limits
  # rate_limit = 14

  ## The delay and window options control the number of points selected on
  ## each gather.  When set, metrics are gathered between:
  ##   start: now() - delay - window
  ##   end:   now() - delay
  #
  ## Collection delay; if set too low metrics may not yet be available.
  # delay = "5m"
  #
  ## If unset, the window will start at 1m and be updated dynamically to span
  ## the time between calls (approximately the length of the plugin interval).
  # window = "1m"

  ## TTL for cached list of metric types.  This is the maximum amount of time
  ## it may take to discover new metrics.
  # cache_ttl = "1h"

  ## If true, raw bucket counts are collected for distribution value types.
  ## For a more lightweight collection, you may wish to disable and use
  ## distribution_aggregation_aligners instead.
  # gather_raw_distribution_buckets = true

  ## Aggregate functions to be used for metrics whose value type is
  ## distribution.  These aggregate values are recorded in in addition to raw
  ## bucket counts; if they are enabled.
  ##
  ## For a list of aligner strings see:
  ##   https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
  # distribution_aggregation_aligners = [
  #  "ALIGN_PERCENTILE_99",
  #  "ALIGN_PERCENTILE_95",
  #  "ALIGN_PERCENTILE_50",
  # ]

  ## Filters can be added to reduce the number of time series matched.  All
  ## functions are supported: starts_with, ends_with, has_substring, and
  ## one_of.  Only the '=' operator is supported.
  ##
  ## The logical operators when combining filters are defined statically using
  ## the following values:
  ##   filter ::=  {AND  AND  AND }
  ##   resource_labels ::=  {OR }
  ##   metric_labels ::=  {OR }
  ##   user_labels ::=  {OR }
  ##   system_labels ::=  {OR }
  ##
  ## For more details, see https://cloud.google.com/monitoring/api/v3/filters
  #
  ## Resource labels refine the time series selection with the following expression:
  ##   resource.labels. = 
  # [[inputs.stackdriver.filter.resource_labels]]
  #   key = "instance_name"
  #   value = 'starts_with("localhost")'
  #
  ## Metric labels refine the time series selection with the following expression:
  ##   metric.labels. = 
  #  [[inputs.stackdriver.filter.metric_labels]]
  #    key = "device_name"
  #    value = 'one_of("sda", "sdb")'
  #
  ## User labels refine the time series selection with the following expression:
  ##   metadata.user_labels."" = 
  #  [[inputs.stackdriver.filter.user_labels]]
  #    key = "environment"
  #    value = 'one_of("prod", "staging")'
  #
  ## System labels refine the time series selection with the following expression:
  ##   metadata.system_labels."" = 
  #  [[inputs.stackdriver.filter.system_labels]]
  #    key = "machine_type"
  #    value = 'starts_with("e2-")'
</code></pre>

InfluxDB

[[outputs.influxdb]]
  ## The full HTTP or UDP URL for your InfluxDB instance.
  ##
  ## Multiple URLs can be specified for a single cluster, only ONE of the
  ## urls will be written to each interval.
  # urls = ["unix:///var/run/influxdb.sock"]
  # urls = ["udp://127.0.0.1:8089"]
  # urls = ["http://127.0.0.1:8086"]

  ## Local address to bind when connecting to the server
  ## If empty or not set, the local address is automatically chosen.
  # local_address = ""

  ## The target database for metrics; will be created as needed.
  ## For UDP url endpoint database needs to be configured on server side.
  # database = "telegraf"

  ## The value of this tag will be used to determine the database.  If this
  ## tag is not set the 'database' option is used as the default.
  # database_tag = ""

  ## If true, the 'database_tag' will not be included in the written metric.
  # exclude_database_tag = false

  ## If true, no CREATE DATABASE queries will be sent.  Set to true when using
  ## Telegraf with a user without permissions to create databases or when the
  ## database already exists.
  # skip_database_creation = false

  ## Name of existing retention policy to write to.  Empty string writes to
  ## the default retention policy.  Only takes effect when using HTTP.
  # retention_policy = ""

  ## The value of this tag will be used to determine the retention policy.  If this
  ## tag is not set the 'retention_policy' option is used as the default.
  # retention_policy_tag = ""

  ## If true, the 'retention_policy_tag' will not be included in the written metric.
  # exclude_retention_policy_tag = false

  ## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
  ## Only takes effect when using HTTP.
  # write_consistency = "any"

  ## Timeout for HTTP messages.
  # timeout = "5s"

  ## HTTP Basic Auth
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"

  ## HTTP User-Agent
  # user_agent = "telegraf"

  ## UDP payload size is the maximum packet size to send.
  # udp_payload = "512B"

  ## Optional TLS Config for use on HTTP connections.
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## HTTP Proxy override, if unset values the standard proxy environment
  ## variables are consulted to determine which proxy, if any, should be used.
  # http_proxy = "http://corporate.proxy:3128"

  ## Additional HTTP headers
  # http_headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "gzip"

  ## When true, Telegraf will output unsigned integers as unsigned values,
  ## i.e.: "42u".  You will need a version of InfluxDB supporting unsigned
  ## integer values.  Enabling this option will result in field type errors if
  ## existing data has been written.
  # influx_uint_support = false

  ## When true, Telegraf will omit the timestamp on data to allow InfluxDB
  ## to set the timestamp of the data during ingestion. This is generally NOT
  ## what you want as it can lead to data points captured at different times
  ## getting omitted due to similar data.
  # influx_omit_timestamp = false

Input and output integration examples

Google Cloud Stackdriver

  1. Integrating Cloud Metrics into Custom Dashboards: With this plugin, teams can funnel metrics from Google Cloud into personalized dashboards, allowing for real-time monitoring of application performance and resource utilization. By customizing the visual representation of cloud metrics, operations teams can easily identify trends and anomalies, enabling proactive management before issues escalate.

  2. Automated Alerts and Analysis: Users can set up automated alerting mechanisms leveraging the plugin’s metrics to track resource thresholds. This capability allows teams to act swiftly in response to performance degradation or outages by providing immediate notifications, thus reducing the mean time to recovery and ensuring continued operational efficiency.

  3. Cross-Platform Resource Comparison: The plugin can be used to draw metrics from various Google Cloud services and compare them with on-premise resources. This cross-platform visibility helps organizations make informed decisions about resource allocation and scaling strategies, as well as optimize cloud spending versus on-premise infrastructure.

  4. Historical Data Analysis for Capacity Planning: By collecting historical metrics over time, the plugin empowers teams to conduct thorough capacity planning. Understanding past performance trends facilitates accurate forecasting for resource needs, leading to better budgeting and investment strategies.

InfluxDB

  1. Real-Time System Monitoring: Utilize the InfluxDB plugin to capture and store metrics from a range of system components, such as CPU usage, memory consumption, and disk I/O. By pushing these metrics into InfluxDB, you can create a live dashboard that visualizes system performance in real time. This setup not only helps in identifying performance bottlenecks but also assists in proactive capacity planning by analyzing trends over time.

  2. Performance Tracking for Web Applications: Automatically gather and push metrics related to web application performance, such as request durations, error rates, and user interactions, to InfluxDB. By employing this plugin in your monitoring stack, you can use the stored metrics to generate reports and analyses that help understand user behavior and application efficiency, thus guiding development and optimization efforts.

  3. IoT Data Aggregation: Leverage the InfluxDB Telegraf plugin to collect sensor data from various IoT devices and store it in a centralized InfluxDB instance. This use case enables you to analyze trends and patterns in environmental or machine data over time, facilitating smarter decisions and predictive maintenance strategies. By integrating IoT data into InfluxDB, organizations can harness the power of historical data analysis to drive innovation and operational efficiency.

  4. Analyzing Historical Metrics for Forecasting: Set up the InfluxDB plugin to send historical metric data into InfluxDB and use it to drive forecasting models. By analyzing past performance metrics, you can create predictive models that forecast future trends and demands. This application is particularly useful for business intelligence purposes, helping organizations prepare for fluctuations in resource needs based on historical usage patterns.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration