Salesforce and MySQL Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Salesforce and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Salesforce Telegraf plugin collects crucial metrics regarding the API usage and limits in Salesforce organizations, enabling effective monitoring and management of API consumption.

The Telegraf SQL plugin allows you to store metrics from Telegraf directly into a MySQL database, making it easier to analyze and visualize the collected metrics.

Integration details

Salesforce

The Salesforce plugin allows users to gather metrics about API usage limits and the remaining usage within their Salesforce organization. By leveraging Salesforce’s REST API, specifically the limits endpoint, this plugin provides critical insights into how much of the API usage has been consumed and what remains available. This is particularly important for organizations that rely on Salesforce for their operations, as exceeding API limits can interrupt service and hinder business processes. The plugin processes data into a structured format containing maximum and remaining values for various API operations, making it easier for teams to monitor their usage and plan accordingly. The provided configuration allows users to customize their credentials, environment type (sandbox or production), and API version, ensuring flexibility in different deployment scenarios.

MySQL

Telegraf’s SQL output plugin is designed to seamlessly write metric data to a SQL database by dynamically creating tables and columns based on the incoming metrics. When configured for MySQL, the plugin leverages the go-sql-driver/mysql, which requires enabling the ANSI_QUOTES SQL mode to ensure proper handling of quoted identifiers. This dynamic schema creation approach ensures that each metric is stored in its own table with a structure derived from its fields and tags, providing a detailed, timestamped record of system performance. The flexibility of the plugin allows it to handle high-throughput environments, making it ideal for scenarios that demand robust, granular metric logging and historical data analysis.

Configuration

Salesforce

[[inputs.salesforce]]
  ## specify your credentials
  ##
  username = "your_username"
  password = "your_password"
  ##
  ## (optional) security token
  # security_token = "your_security_token"
  ##
  ## (optional) environment type (sandbox or production)
  ## default is: production
  ##
  # environment = "production"
  ##
  ## (optional) API version (default: "39.0")
  ##
  # version = "39.0"

MySQL

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ##  sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
  driver = "mysql"

  ## Data source name
  ## The format of the data source name is different for each database driver.
  ## See the plugin readme for details.
  data_source_name = "username:password@tcp(host:port)/dbname"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS} - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE}({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - tablename as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL
  init_sql = "SET sql_mode='ANSI_QUOTES';"

  ## Maximum amount of time a connection may be idle. "0s" means connections are
  ## never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections
  ## are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on
  ## the right are the data types Telegraf will use when sending to a database.
  ##
  ## The database values used must be data types the destination database
  ## understands. It is up to the user to ensure that the selected data type is
  ## available in the database they are using. Refer to your database
  ## documentation for what data types are available and supported.
  #[outputs.sql.convert]
  #  integer              = "INT"
  #  real                 = "DOUBLE"
  #  text                 = "TEXT"
  #  timestamp            = "TIMESTAMP"
  #  defaultvalue         = "TEXT"
  #  unsigned             = "UNSIGNED"
  #  bool                 = "BOOL"
  #  ## This setting controls the behavior of the unsigned value. By default the
  #  ## setting will take the integer value and append the unsigned value to it. The other
  #  ## option is "literal", which will use the actual value the user provides to
  #  ## the unsigned option. This is useful for a database like ClickHouse where
  #  ## the unsigned value should use a value like "uint64".
  #  # conversion_style = "unsigned_suffix"

Input and output integration examples

Salesforce

  1. Monitoring API Limit Usage for Scaling Decisions: Use the Salesforce plugin to track API limit usage over time and make informed decisions about when to scale Salesforce resources. By visualizing API consumption patterns, organizations can predict peak usage times, allowing them to proactively adjust their infrastructure or request higher limits as needed. This optimization leads to better performance and less downtime during critical business operations.

  2. Automated Alert System for API Limit Exceedance: Integrate this plugin with a notification system to alert teams when API usage approaches critical limits. This setup not only ensures teams are proactively notified to prevent disruptions, but also helps in maintaining operational continuity and customer satisfaction. The alerts can be configured to trigger automated scripts that either adjust load or inform stakeholders accordingly.

  3. Comparative Analysis of Multiple Salesforces: Leverage the Salesforce Input Plugin to gather metrics from multiple Salesforce instances across different departments or business units. By centralizing this data, organizations can perform comparative analyses to identify departments that may be exceeding their API limits more frequently than others. This allows for targeted discussions and strategies to balance API usage across the organization, leading to better resource allocation and efficiency.

MySQL

  1. Real-Time Web Analytics Storage: Leverage the plugin to capture website performance metrics and store them in MySQL. This setup enables teams to monitor user interactions, analyze traffic patterns, and dynamically adjust site features based on real-time data insights.

  2. IoT Device Monitoring: Utilize the plugin to collect metrics from a network of IoT sensors and log them into a MySQL database. This use case supports continuous monitoring of device health and performance, allowing for predictive maintenance and immediate response to anomalies.

  3. Financial Transaction Logging: Record high-frequency financial transaction data with precise timestamps. This approach supports robust audit trails, real-time fraud detection, and comprehensive historical analysis for compliance and reporting purposes.

  4. Application Performance Benchmarking: Integrate the plugin with application performance monitoring systems to log metrics into MySQL. This facilitates detailed benchmarking and trend analysis over time, enabling organizations to identify performance bottlenecks and optimize resource allocation effectively.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration