Salesforce and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Salesforce Telegraf plugin collects crucial metrics regarding the API usage and limits in Salesforce organizations, enabling effective monitoring and management of API consumption.
The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.
Integration details
Salesforce
The Salesforce plugin allows users to gather metrics about API usage limits and the remaining usage within their Salesforce organization. By leveraging Salesforce’s REST API, specifically the limits endpoint, this plugin provides critical insights into how much of the API usage has been consumed and what remains available. This is particularly important for organizations that rely on Salesforce for their operations, as exceeding API limits can interrupt service and hinder business processes. The plugin processes data into a structured format containing maximum and remaining values for various API operations, making it easier for teams to monitor their usage and plan accordingly. The provided configuration allows users to customize their credentials, environment type (sandbox or production), and API version, ensuring flexibility in different deployment scenarios.
MongoDB
This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.
Configuration
Salesforce
[[inputs.salesforce]]
## specify your credentials
##
username = "your_username"
password = "your_password"
##
## (optional) security token
# security_token = "your_security_token"
##
## (optional) environment type (sandbox or production)
## default is: production
##
# environment = "production"
##
## (optional) API version (default: "39.0")
##
# version = "39.0"
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
Salesforce
-
Monitoring API Limit Usage for Scaling Decisions: Use the Salesforce plugin to track API limit usage over time and make informed decisions about when to scale Salesforce resources. By visualizing API consumption patterns, organizations can predict peak usage times, allowing them to proactively adjust their infrastructure or request higher limits as needed. This optimization leads to better performance and less downtime during critical business operations.
-
Automated Alert System for API Limit Exceedance: Integrate this plugin with a notification system to alert teams when API usage approaches critical limits. This setup not only ensures teams are proactively notified to prevent disruptions, but also helps in maintaining operational continuity and customer satisfaction. The alerts can be configured to trigger automated scripts that either adjust load or inform stakeholders accordingly.
-
Comparative Analysis of Multiple Salesforces: Leverage the Salesforce Input Plugin to gather metrics from multiple Salesforce instances across different departments or business units. By centralizing this data, organizations can perform comparative analyses to identify departments that may be exceeding their API limits more frequently than others. This allows for targeted discussions and strategies to balance API usage across the organization, leading to better resource allocation and efficiency.
MongoDB
-
Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.
-
Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.
-
Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.
-
Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration