Salesforce and Clickhouse Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Salesforce and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Salesforce Telegraf plugin collects crucial metrics regarding the API usage and limits in Salesforce organizations, enabling effective monitoring and management of API consumption.

Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.

Integration details

Salesforce

The Salesforce plugin allows users to gather metrics about API usage limits and the remaining usage within their Salesforce organization. By leveraging Salesforce’s REST API, specifically the limits endpoint, this plugin provides critical insights into how much of the API usage has been consumed and what remains available. This is particularly important for organizations that rely on Salesforce for their operations, as exceeding API limits can interrupt service and hinder business processes. The plugin processes data into a structured format containing maximum and remaining values for various API operations, making it easier for teams to monitor their usage and plan accordingly. The provided configuration allows users to customize their credentials, environment type (sandbox or production), and API version, ensuring flexibility in different deployment scenarios.

Clickhouse

Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.

Configuration

Salesforce

[[inputs.salesforce]]
  ## specify your credentials
  ##
  username = "your_username"
  password = "your_password"
  ##
  ## (optional) security token
  # security_token = "your_security_token"
  ##
  ## (optional) environment type (sandbox or production)
  ## default is: production
  ##
  # environment = "production"
  ##
  ## (optional) API version (default: "39.0")
  ##
  # version = "39.0"

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

Input and output integration examples

Salesforce

  1. Monitoring API Limit Usage for Scaling Decisions: Use the Salesforce plugin to track API limit usage over time and make informed decisions about when to scale Salesforce resources. By visualizing API consumption patterns, organizations can predict peak usage times, allowing them to proactively adjust their infrastructure or request higher limits as needed. This optimization leads to better performance and less downtime during critical business operations.

  2. Automated Alert System for API Limit Exceedance: Integrate this plugin with a notification system to alert teams when API usage approaches critical limits. This setup not only ensures teams are proactively notified to prevent disruptions, but also helps in maintaining operational continuity and customer satisfaction. The alerts can be configured to trigger automated scripts that either adjust load or inform stakeholders accordingly.

  3. Comparative Analysis of Multiple Salesforces: Leverage the Salesforce Input Plugin to gather metrics from multiple Salesforce instances across different departments or business units. By centralizing this data, organizations can perform comparative analyses to identify departments that may be exceeding their API limits more frequently than others. This allows for targeted discussions and strategies to balance API usage across the organization, leading to better resource allocation and efficiency.

Clickhouse

  1. Real-Time Analytics for High-Volume Data: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.

  2. Time-Series Data Warehousing: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.

  3. Scalable Monitoring in Distributed Environments: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.

  4. Optimized Storage for IoT Deployments: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration