RabbitMQ and Sumo Logic Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider RabbitMQ and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin reads metrics from RabbitMQ servers, providing essential insights into the performance and state of the messaging system.

The Sumo Logic plugin is designed to facilitate the sending of metrics from Telegraf to Sumo Logic’s HTTP Source. By utilizing this plugin, users can analyze their metric data in the Sumo Logic platform, leveraging various output data formats.

Integration details

RabbitMQ

The RabbitMQ plugin for Telegraf allows users to gather metrics from RabbitMQ servers via the RabbitMQ Management Plugin. This capability is crucial for monitoring the performance and health of RabbitMQ instances, which are widely utilized for message queuing and processing in various applications. The plugin provides comprehensive insights into key RabbitMQ metrics, including message rates, queue depths, and node health statistics, thereby enabling operators to maintain optimal performance and robustness of their messaging infrastructure. Additionally, it supports secret-stores for managing sensitive credentials securely, making integration with existing systems smoother. Configuration options allow for flexibility in specifying the nodes, queues, and exchanges to monitor, providing valuable adaptability for diverse deployment scenarios.

Sumo Logic

This plugin facilitates the transmission of metrics to Sumo Logic’s HTTP Source, employing specified data formats for HTTP messages. Telegraf, which must be version 1.16.0 or higher, can send metrics encoded in several formats, including graphite, carbon2, and prometheus. These formats correspond to different content types recognized by Sumo Logic, ensuring that the metrics are correctly interpreted for analysis. Integration with Sumo Logic allows users to leverage a comprehensive analytics platform, enabling rich visualizations and insights from their metric data. The plugin provides configuration options such as setting URLs for the HTTP Metrics Source, choosing the data format, and specifying additional parameters like timeout and request size, which enhance flexibility and control in data monitoring workflows.

Configuration

RabbitMQ

[[inputs.rabbitmq]]
  ## Management Plugin url. (default: http://localhost:15672)
  # url = "http://localhost:15672"
  ## Tag added to rabbitmq_overview series; deprecated: use tags
  # name = "rmq-server-1"
  ## Credentials
  # username = "guest"
  # password = "guest"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional request timeouts
  ## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
  ## for a server's response headers after fully writing the request.
  # header_timeout = "3s"
  ##
  ## client_timeout specifies a time limit for requests made by this client.
  ## Includes connection time, any redirects, and reading the response body.
  # client_timeout = "4s"

  ## A list of nodes to gather as the rabbitmq_node measurement. If not
  ## specified, metrics for all nodes are gathered.
  # nodes = ["rabbit@node1", "rabbit@node2"]

  ## A list of queues to gather as the rabbitmq_queue measurement. If not
  ## specified, metrics for all queues are gathered.
  ## Deprecated in 1.6: Use queue_name_include instead.
  # queues = ["telegraf"]

  ## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
  ## specified, metrics for all exchanges are gathered.
  # exchanges = ["telegraf"]

  ## Metrics to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all metrics
  ## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
  # metric_include = []
  # metric_exclude = []

  ## Queues to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all queues
  # queue_name_include = []
  # queue_name_exclude = []

  ## Federation upstreams to include and exclude specified as an array of glob
  ## pattern strings.  Federation links can also be limited by the queue and
  ## exchange filters.
  # federation_upstream_include = []
  # federation_upstream_exclude = []

Sumo Logic

[[outputs.sumologic]]
  ## Unique URL generated for your HTTP Metrics Source.
  ## This is the address to send metrics to.
  # url = "https://events.sumologic.net/receiver/v1/http/"

  ## Data format to be used for sending metrics.
  ## This will set the "Content-Type" header accordingly.
  ## Currently supported formats:
  ## * graphite - for Content-Type of application/vnd.sumologic.graphite
  ## * carbon2 - for Content-Type of application/vnd.sumologic.carbon2
  ## * prometheus - for Content-Type of application/vnd.sumologic.prometheus
  ##
  ## More information can be found at:
  ## https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source/Upload-Metrics-to-an-HTTP-Source#content-type-headers-for-metrics
  ##
  ## NOTE:
  ## When unset, telegraf will by default use the influx serializer which is currently unsupported
  ## in HTTP Source.
  data_format = "carbon2"

  ## Timeout used for HTTP request
  # timeout = "5s"

  ## Max HTTP request body size in bytes before compression (if applied).
  ## By default 1MB is recommended.
  ## NOTE:
  ## Bear in mind that in some serializer a metric even though serialized to multiple
  ## lines cannot be split any further so setting this very low might not work
  ## as expected.
  # max_request_body_size = 1000000

  ## Additional, Sumo specific options.
  ## Full list can be found here:
  ## https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source/Upload-Metrics-to-an-HTTP-Source#supported-http-headers

  ## Desired source name.
  ## Useful if you want to override the source name configured for the source.
  # source_name = ""

  ## Desired host name.
  ## Useful if you want to override the source host configured for the source.
  # source_host = ""

  ## Desired source category.
  ## Useful if you want to override the source category configured for the source.
  # source_category = ""

  ## Comma-separated key=value list of dimensions to apply to every metric.
  ## Custom dimensions will allow you to query your metrics at a more granular level.
  # dimensions = ""
</code></pre>

Input and output integration examples

RabbitMQ

  1. Monitoring Queue Performance Metrics: Use the RabbitMQ plugin to keep track of queue performance over time. This involves setting up monitoring dashboards that visualize crucial queue metrics such as message rates, the number of consumers, and message delivery rates. With this information, teams can proactively address any bottlenecks or performance issues by analyzing trends and making data-informed decisions about scaling or optimizing their RabbitMQ configuration.

  2. Alerting on System Health: Integrate the RabbitMQ plugin with an alerting system to notify operational teams of potential issues within RabbitMQ instances. For example, if the number of unacknowledged messages reaches a critical threshold or if queues become overwhelmed, alerts can trigger, allowing for immediate investigation and swift remedial action to maintain the health of message flows.

  3. Analyzing Message Processing Metrics: Employ the plugin to gather detailed metrics on message processing performance, such as the rates of messages published, acknowledged, and redelivered. By analyzing these metrics, teams can evaluate the efficiency of their message consumer applications and make adjustments to configuration or code where necessary, thereby enhancing overall system throughput and resilience.

  4. Cross-System Data Integration: Leverage the metrics collected by the RabbitMQ plugin to integrate data flows between RabbitMQ and other systems or services. For example, use the gathered metrics to drive automated workflows or analytics pipelines that utilize messages processed in RabbitMQ, enabling organizations to optimize workflows and enhance data agility across their ecosystems.

Sumo Logic

  1. Real-Time System Monitoring Dashboard: Utilize the Sumo Logic plugin to continuously feed performance metrics from your servers into a Sumo Logic dashboard. This setup allows tech teams to visualize system health and load in real-time, enabling quicker identification of any performance bottlenecks or system failures through detailed graphs and metrics.

  2. Automated Alerting System: Configure the plugin to send metrics that trigger alerts in Sumo Logic for specific thresholds such as CPU usage or memory consumption. By setting up automated alerts, teams can proactively address issues before they escalate into critical failures, significantly improving response times and overall system reliability.

  3. Cross-System Metrics Aggregation: Integrate multiple Telegraf instances across different environments (development, testing, production) and funnel all metrics to a central Sumo Logic instance using this plugin. This aggregation enables comprehensive analysis across environments, facilitating better monitoring and informed decision-making across the software development lifecycle.

  4. Custom Metrics with Dimensions Tracking: Use the Sumo Logic plugin to send customized metrics that include dimensions identifying various aspects of your infrastructure (e.g., environment, service type). This granular tracking allows for more tailored analytics, enabling your team to dissect performance across different application layers or business functions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration