RabbitMQ and Loki Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider RabbitMQ and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin reads metrics from RabbitMQ servers, providing essential insights into the performance and state of the messaging system.

The Loki plugin allows users to send logs to Loki for aggregation and querying, leveraging Loki’s efficient storage capabilities.

Integration details

RabbitMQ

The RabbitMQ plugin for Telegraf allows users to gather metrics from RabbitMQ servers via the RabbitMQ Management Plugin. This capability is crucial for monitoring the performance and health of RabbitMQ instances, which are widely utilized for message queuing and processing in various applications. The plugin provides comprehensive insights into key RabbitMQ metrics, including message rates, queue depths, and node health statistics, thereby enabling operators to maintain optimal performance and robustness of their messaging infrastructure. Additionally, it supports secret-stores for managing sensitive credentials securely, making integration with existing systems smoother. Configuration options allow for flexibility in specifying the nodes, queues, and exchanges to monitor, providing valuable adaptability for diverse deployment scenarios.

Loki

This Loki plugin integrates with Grafana Loki, a powerful log aggregation system. By sending logs in a format compatible with Loki, this plugin allows for efficient storage and querying of logs. Each log entry is structured in a key-value format where keys represent the field names and values represent the corresponding log information. The sorting of logs by timestamp ensures that the log streams maintain chronological order when queried through Loki. This plugin’s support for secrets makes it easier to manage authentication parameters securely, while options for HTTP headers, gzip encoding, and TLS configuration enhance the adaptability and security of log transmission, fitting various deployment needs.

Configuration

RabbitMQ

[[inputs.rabbitmq]]
  ## Management Plugin url. (default: http://localhost:15672)
  # url = "http://localhost:15672"
  ## Tag added to rabbitmq_overview series; deprecated: use tags
  # name = "rmq-server-1"
  ## Credentials
  # username = "guest"
  # password = "guest"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional request timeouts
  ## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
  ## for a server's response headers after fully writing the request.
  # header_timeout = "3s"
  ##
  ## client_timeout specifies a time limit for requests made by this client.
  ## Includes connection time, any redirects, and reading the response body.
  # client_timeout = "4s"

  ## A list of nodes to gather as the rabbitmq_node measurement. If not
  ## specified, metrics for all nodes are gathered.
  # nodes = ["rabbit@node1", "rabbit@node2"]

  ## A list of queues to gather as the rabbitmq_queue measurement. If not
  ## specified, metrics for all queues are gathered.
  ## Deprecated in 1.6: Use queue_name_include instead.
  # queues = ["telegraf"]

  ## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
  ## specified, metrics for all exchanges are gathered.
  # exchanges = ["telegraf"]

  ## Metrics to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all metrics
  ## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
  # metric_include = []
  # metric_exclude = []

  ## Queues to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all queues
  # queue_name_include = []
  # queue_name_exclude = []

  ## Federation upstreams to include and exclude specified as an array of glob
  ## pattern strings.  Federation links can also be limited by the queue and
  ## exchange filters.
  # federation_upstream_include = []
  # federation_upstream_exclude = []

Loki

[[outputs.loki]]
  ## The domain of Loki
  domain = "https://loki.domain.tld"

  ## Endpoint to write api
  # endpoint = "/loki/api/v1/push"

  ## Connection timeout, defaults to "5s" if not set.
  # timeout = "5s"

  ## Basic auth credential
  # username = "loki"
  # password = "pass"

  ## Additional HTTP headers
  # http_headers = {"X-Scope-OrgID" = "1"}

  ## If the request must be gzip encoded
  # gzip_request = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Sanitize Tag Names
  ## If true, all tag names will have invalid characters replaced with
  ## underscores that do not match the regex: ^[a-zA-Z_:][a-zA-Z0-9_:]*.
  # sanitize_label_names = false

  ## Metric Name Label
  ## Label to use for the metric name to when sending metrics. If set to an
  ## empty string, this will not add the label. This is NOT suggested as there
  ## is no way to differentiate between multiple metrics.
  # metric_name_label = "__name"

Input and output integration examples

RabbitMQ

  1. Monitoring Queue Performance Metrics: Use the RabbitMQ plugin to keep track of queue performance over time. This involves setting up monitoring dashboards that visualize crucial queue metrics such as message rates, the number of consumers, and message delivery rates. With this information, teams can proactively address any bottlenecks or performance issues by analyzing trends and making data-informed decisions about scaling or optimizing their RabbitMQ configuration.

  2. Alerting on System Health: Integrate the RabbitMQ plugin with an alerting system to notify operational teams of potential issues within RabbitMQ instances. For example, if the number of unacknowledged messages reaches a critical threshold or if queues become overwhelmed, alerts can trigger, allowing for immediate investigation and swift remedial action to maintain the health of message flows.

  3. Analyzing Message Processing Metrics: Employ the plugin to gather detailed metrics on message processing performance, such as the rates of messages published, acknowledged, and redelivered. By analyzing these metrics, teams can evaluate the efficiency of their message consumer applications and make adjustments to configuration or code where necessary, thereby enhancing overall system throughput and resilience.

  4. Cross-System Data Integration: Leverage the metrics collected by the RabbitMQ plugin to integrate data flows between RabbitMQ and other systems or services. For example, use the gathered metrics to drive automated workflows or analytics pipelines that utilize messages processed in RabbitMQ, enabling organizations to optimize workflows and enhance data agility across their ecosystems.

Loki

  1. Centralized Logging for Microservices: Utilize the Loki plugin to gather logs from multiple microservices running in a Kubernetes cluster. By directing logs to a centralized Loki instance, developers can monitor, search, and analyze logs from all services in one place, facilitating easier troubleshooting and performance monitoring. This setup streamlines operations and supports rapid response to issues across distributed applications.

  2. Real-Time Log Anomaly Detection: Combine Loki with monitoring tools to analyze log outputs in real-time for unusual patterns that could indicate system errors or security threats. Implementing anomaly detection on log streams enables teams to proactively identify and respond to incidents, thereby improving system reliability and enhancing security postures.

  3. Enhanced Log Processing with Gzip Compression: Configure the Loki plugin to utilize gzip compression for log transmission. This approach can reduce bandwidth usage and improve transmission speeds, especially beneficial in environments where network bandwidth may be a constraint. It’s particularly useful for high-volume logging applications where every byte counts and performance is critical.

  4. Multi-Tenancy Support with Custom Headers: Leverage the ability to add custom HTTP headers to segregate logs from different tenants in a multi-tenant application environment. By using the Loki plugin to send different headers for each tenant, operators can ensure proper log management and compliance with data isolation requirements, making it a versatile solution for SaaS applications.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration