RabbitMQ and InfluxDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin reads metrics from RabbitMQ servers, providing essential insights into the performance and state of the messaging system.

The InfluxDB plugin writes metrics to the InfluxDB HTTP service, allowing for efficient storage and retrieval of time series data.

Integration details

RabbitMQ

The RabbitMQ plugin for Telegraf allows users to gather metrics from RabbitMQ servers via the RabbitMQ Management Plugin. This capability is crucial for monitoring the performance and health of RabbitMQ instances, which are widely utilized for message queuing and processing in various applications. The plugin provides comprehensive insights into key RabbitMQ metrics, including message rates, queue depths, and node health statistics, thereby enabling operators to maintain optimal performance and robustness of their messaging infrastructure. Additionally, it supports secret-stores for managing sensitive credentials securely, making integration with existing systems smoother. Configuration options allow for flexibility in specifying the nodes, queues, and exchanges to monitor, providing valuable adaptability for diverse deployment scenarios.

InfluxDB

The InfluxDB Telegraf plugin serves to send metrics to the InfluxDB HTTP API, facilitating the storage and query of time series data in a structured manner. Integrating seamlessly with InfluxDB, this plugin provides essential features such as token-based authentication and support for multiple InfluxDB cluster nodes, ensuring reliable and scalable data ingestion. Through its configurability, users can specify options like organization, destination buckets, and HTTP-specific settings, providing flexibility to tailor how data is sent and stored. The plugin also supports secret management for sensitive data, which enhances security in production environments. This plugin is particularly beneficial in modern observability stacks where real-time analytics and storage of time series data are crucial.

Configuration

RabbitMQ

[[inputs.rabbitmq]]
  ## Management Plugin url. (default: http://localhost:15672)
  # url = "http://localhost:15672"
  ## Tag added to rabbitmq_overview series; deprecated: use tags
  # name = "rmq-server-1"
  ## Credentials
  # username = "guest"
  # password = "guest"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional request timeouts
  ## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
  ## for a server's response headers after fully writing the request.
  # header_timeout = "3s"
  ##
  ## client_timeout specifies a time limit for requests made by this client.
  ## Includes connection time, any redirects, and reading the response body.
  # client_timeout = "4s"

  ## A list of nodes to gather as the rabbitmq_node measurement. If not
  ## specified, metrics for all nodes are gathered.
  # nodes = ["rabbit@node1", "rabbit@node2"]

  ## A list of queues to gather as the rabbitmq_queue measurement. If not
  ## specified, metrics for all queues are gathered.
  ## Deprecated in 1.6: Use queue_name_include instead.
  # queues = ["telegraf"]

  ## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
  ## specified, metrics for all exchanges are gathered.
  # exchanges = ["telegraf"]

  ## Metrics to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all metrics
  ## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
  # metric_include = []
  # metric_exclude = []

  ## Queues to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all queues
  # queue_name_include = []
  # queue_name_exclude = []

  ## Federation upstreams to include and exclude specified as an array of glob
  ## pattern strings.  Federation links can also be limited by the queue and
  ## exchange filters.
  # federation_upstream_include = []
  # federation_upstream_exclude = []

InfluxDB

[[outputs.influxdb]]
  ## The full HTTP or UDP URL for your InfluxDB instance.
  ##
  ## Multiple URLs can be specified for a single cluster, only ONE of the
  ## urls will be written to each interval.
  # urls = ["unix:///var/run/influxdb.sock"]
  # urls = ["udp://127.0.0.1:8089"]
  # urls = ["http://127.0.0.1:8086"]

  ## Local address to bind when connecting to the server
  ## If empty or not set, the local address is automatically chosen.
  # local_address = ""

  ## The target database for metrics; will be created as needed.
  ## For UDP url endpoint database needs to be configured on server side.
  # database = "telegraf"

  ## The value of this tag will be used to determine the database.  If this
  ## tag is not set the 'database' option is used as the default.
  # database_tag = ""

  ## If true, the 'database_tag' will not be included in the written metric.
  # exclude_database_tag = false

  ## If true, no CREATE DATABASE queries will be sent.  Set to true when using
  ## Telegraf with a user without permissions to create databases or when the
  ## database already exists.
  # skip_database_creation = false

  ## Name of existing retention policy to write to.  Empty string writes to
  ## the default retention policy.  Only takes effect when using HTTP.
  # retention_policy = ""

  ## The value of this tag will be used to determine the retention policy.  If this
  ## tag is not set the 'retention_policy' option is used as the default.
  # retention_policy_tag = ""

  ## If true, the 'retention_policy_tag' will not be included in the written metric.
  # exclude_retention_policy_tag = false

  ## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
  ## Only takes effect when using HTTP.
  # write_consistency = "any"

  ## Timeout for HTTP messages.
  # timeout = "5s"

  ## HTTP Basic Auth
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"

  ## HTTP User-Agent
  # user_agent = "telegraf"

  ## UDP payload size is the maximum packet size to send.
  # udp_payload = "512B"

  ## Optional TLS Config for use on HTTP connections.
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## HTTP Proxy override, if unset values the standard proxy environment
  ## variables are consulted to determine which proxy, if any, should be used.
  # http_proxy = "http://corporate.proxy:3128"

  ## Additional HTTP headers
  # http_headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "gzip"

  ## When true, Telegraf will output unsigned integers as unsigned values,
  ## i.e.: "42u".  You will need a version of InfluxDB supporting unsigned
  ## integer values.  Enabling this option will result in field type errors if
  ## existing data has been written.
  # influx_uint_support = false

  ## When true, Telegraf will omit the timestamp on data to allow InfluxDB
  ## to set the timestamp of the data during ingestion. This is generally NOT
  ## what you want as it can lead to data points captured at different times
  ## getting omitted due to similar data.
  # influx_omit_timestamp = false

Input and output integration examples

RabbitMQ

  1. Monitoring Queue Performance Metrics: Use the RabbitMQ plugin to keep track of queue performance over time. This involves setting up monitoring dashboards that visualize crucial queue metrics such as message rates, the number of consumers, and message delivery rates. With this information, teams can proactively address any bottlenecks or performance issues by analyzing trends and making data-informed decisions about scaling or optimizing their RabbitMQ configuration.

  2. Alerting on System Health: Integrate the RabbitMQ plugin with an alerting system to notify operational teams of potential issues within RabbitMQ instances. For example, if the number of unacknowledged messages reaches a critical threshold or if queues become overwhelmed, alerts can trigger, allowing for immediate investigation and swift remedial action to maintain the health of message flows.

  3. Analyzing Message Processing Metrics: Employ the plugin to gather detailed metrics on message processing performance, such as the rates of messages published, acknowledged, and redelivered. By analyzing these metrics, teams can evaluate the efficiency of their message consumer applications and make adjustments to configuration or code where necessary, thereby enhancing overall system throughput and resilience.

  4. Cross-System Data Integration: Leverage the metrics collected by the RabbitMQ plugin to integrate data flows between RabbitMQ and other systems or services. For example, use the gathered metrics to drive automated workflows or analytics pipelines that utilize messages processed in RabbitMQ, enabling organizations to optimize workflows and enhance data agility across their ecosystems.

InfluxDB

  1. Real-Time System Monitoring: Utilize the InfluxDB plugin to capture and store metrics from a range of system components, such as CPU usage, memory consumption, and disk I/O. By pushing these metrics into InfluxDB, you can create a live dashboard that visualizes system performance in real time. This setup not only helps in identifying performance bottlenecks but also assists in proactive capacity planning by analyzing trends over time.

  2. Performance Tracking for Web Applications: Automatically gather and push metrics related to web application performance, such as request durations, error rates, and user interactions, to InfluxDB. By employing this plugin in your monitoring stack, you can use the stored metrics to generate reports and analyses that help understand user behavior and application efficiency, thus guiding development and optimization efforts.

  3. IoT Data Aggregation: Leverage the InfluxDB Telegraf plugin to collect sensor data from various IoT devices and store it in a centralized InfluxDB instance. This use case enables you to analyze trends and patterns in environmental or machine data over time, facilitating smarter decisions and predictive maintenance strategies. By integrating IoT data into InfluxDB, organizations can harness the power of historical data analysis to drive innovation and operational efficiency.

  4. Analyzing Historical Metrics for Forecasting: Set up the InfluxDB plugin to send historical metric data into InfluxDB and use it to drive forecasting models. By analyzing past performance metrics, you can create predictive models that forecast future trends and demands. This application is particularly useful for business intelligence purposes, helping organizations prepare for fluctuations in resource needs based on historical usage patterns.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration