OpenTelemetry and Sumo Logic Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider OpenTelemetry and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin receives traces, metrics, and logs from OpenTelemetry clients and agents via gRPC, enabling comprehensive observability of applications.

The Sumo Logic plugin is designed to facilitate the sending of metrics from Telegraf to Sumo Logic’s HTTP Source. By utilizing this plugin, users can analyze their metric data in the Sumo Logic platform, leveraging various output data formats.

Integration details

OpenTelemetry

The OpenTelemetry plugin is designed to receive telemetry data such as traces, metrics, and logs from clients and agents implementing OpenTelemetry via gRPC. This plugin initiates a gRPC service that listens for incoming telemetry data, making it distinct from standard plugins that collect metrics at defined intervals. The OpenTelemetry ecosystem aids developers in observing and understanding their applications’ performance by providing a vendor-neutral way to instrument, generate, collect, and export telemetry data. Key features of this plugin include customizable connection timeouts, adjustable maximum message sizes for incoming data, and options for specifying span, log, and profile dimensions to tag the incoming metrics. With this flexibility, organizations can tailor their telemetry collection to meet precise observability requirements and ensure seamless data integration into systems like InfluxDB.

Sumo Logic

This plugin facilitates the transmission of metrics to Sumo Logic’s HTTP Source, employing specified data formats for HTTP messages. Telegraf, which must be version 1.16.0 or higher, can send metrics encoded in several formats, including graphite, carbon2, and prometheus. These formats correspond to different content types recognized by Sumo Logic, ensuring that the metrics are correctly interpreted for analysis. Integration with Sumo Logic allows users to leverage a comprehensive analytics platform, enabling rich visualizations and insights from their metric data. The plugin provides configuration options such as setting URLs for the HTTP Metrics Source, choosing the data format, and specifying additional parameters like timeout and request size, which enhance flexibility and control in data monitoring workflows.

Configuration

OpenTelemetry

[[inputs.opentelemetry]]
  ## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
  ## address:port
  # service_address = "0.0.0.0:4317"

  ## Override the default (5s) new connection timeout
  # timeout = "5s"

  ## gRPC Maximum Message Size
  # max_msg_size = "4MB"

  ## Override the default span attributes to be used as line protocol tags.
  ## These are always included as tags:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # span_dimensions = ["service.name", "span.name"]

  ## Override the default log record attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  ## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
  ## matches the span_dimensions value.
  # log_record_dimensions = ["service.name"]

  ## Override the default profile attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - profile_id
  ## - address
  ## - sample
  ## - sample_name
  ## - sample_unit
  ## - sample_type
  ## - sample_type_unit
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # profile_dimensions = []

  ## Override the default (prometheus-v1) metrics schema.
  ## Supports: "prometheus-v1", "prometheus-v2"
  ## For more information about the alternatives, read the Prometheus input
  ## plugin notes.
  # metrics_schema = "prometheus-v1"

  ## Optional TLS Config.
  ## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
  ##
  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections.
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
  ## Add service certificate and key.
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

Sumo Logic

[[outputs.sumologic]]
  ## Unique URL generated for your HTTP Metrics Source.
  ## This is the address to send metrics to.
  # url = "https://events.sumologic.net/receiver/v1/http/"

  ## Data format to be used for sending metrics.
  ## This will set the "Content-Type" header accordingly.
  ## Currently supported formats:
  ## * graphite - for Content-Type of application/vnd.sumologic.graphite
  ## * carbon2 - for Content-Type of application/vnd.sumologic.carbon2
  ## * prometheus - for Content-Type of application/vnd.sumologic.prometheus
  ##
  ## More information can be found at:
  ## https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source/Upload-Metrics-to-an-HTTP-Source#content-type-headers-for-metrics
  ##
  ## NOTE:
  ## When unset, telegraf will by default use the influx serializer which is currently unsupported
  ## in HTTP Source.
  data_format = "carbon2"

  ## Timeout used for HTTP request
  # timeout = "5s"

  ## Max HTTP request body size in bytes before compression (if applied).
  ## By default 1MB is recommended.
  ## NOTE:
  ## Bear in mind that in some serializer a metric even though serialized to multiple
  ## lines cannot be split any further so setting this very low might not work
  ## as expected.
  # max_request_body_size = 1000000

  ## Additional, Sumo specific options.
  ## Full list can be found here:
  ## https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source/Upload-Metrics-to-an-HTTP-Source#supported-http-headers

  ## Desired source name.
  ## Useful if you want to override the source name configured for the source.
  # source_name = ""

  ## Desired host name.
  ## Useful if you want to override the source host configured for the source.
  # source_host = ""

  ## Desired source category.
  ## Useful if you want to override the source category configured for the source.
  # source_category = ""

  ## Comma-separated key=value list of dimensions to apply to every metric.
  ## Custom dimensions will allow you to query your metrics at a more granular level.
  # dimensions = ""
</code></pre>

Input and output integration examples

OpenTelemetry

  1. Unified Monitoring Across Services: Use the OpenTelemetry plugin to collect and consolidate telemetry data from various microservices within a Kubernetes environment. By instrumenting each service with OpenTelemetry, you can utilize this plugin to gather a holistic view of application performance and dependencies in real-time, enabling faster troubleshooting and improved reliability of complex systems.

  2. Enhanced Debugging with Traces: Implement this plugin to capture end-to-end traces of requests flowing through multiple services. For instance, when a user initiates a transaction that triggers several backend services, the OpenTelemetry plugin can record detailed traces that highlight performance bottlenecks, giving developers the necessary insights to debug issues and optimize their code.

  3. Dynamic Load Testing and Performance Monitoring: Leverage the capabilities of this plugin during load testing phases by collecting live metrics and traces under simulated higher loads. This approach helps to evaluate the resilience of the application components and identify potential performance degradations preemptively, ensuring a smooth user experience in production.

  4. Integrated Logging and Metrics for Real-Time Monitoring: Combine the OpenTelemetry plugin with logging frameworks to gather real-time logs alongside metric data, creating a powerful observability platform. For example, integrate it within a CI/CD pipeline to monitor builds and deployments, while collecting logs that help diagnose failures or performance issues in real-time.

Sumo Logic

  1. Real-Time System Monitoring Dashboard: Utilize the Sumo Logic plugin to continuously feed performance metrics from your servers into a Sumo Logic dashboard. This setup allows tech teams to visualize system health and load in real-time, enabling quicker identification of any performance bottlenecks or system failures through detailed graphs and metrics.

  2. Automated Alerting System: Configure the plugin to send metrics that trigger alerts in Sumo Logic for specific thresholds such as CPU usage or memory consumption. By setting up automated alerts, teams can proactively address issues before they escalate into critical failures, significantly improving response times and overall system reliability.

  3. Cross-System Metrics Aggregation: Integrate multiple Telegraf instances across different environments (development, testing, production) and funnel all metrics to a central Sumo Logic instance using this plugin. This aggregation enables comprehensive analysis across environments, facilitating better monitoring and informed decision-making across the software development lifecycle.

  4. Custom Metrics with Dimensions Tracking: Use the Sumo Logic plugin to send customized metrics that include dimensions identifying various aspects of your infrastructure (e.g., environment, service type). This granular tracking allows for more tailored analytics, enabling your team to dissect performance across different application layers or business functions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration