OpenTelemetry and SQLite Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin receives traces, metrics, and logs from OpenTelemetry clients and agents via gRPC, enabling comprehensive observability of applications.
Telegraf’s SQL output plugin stores metrics in an SQL database by creating tables dynamically for each metric type. When configured for SQLite, it utilizes a file-based DSN and a minimal SQL schema tailored for lightweight, embedded database usage.
Integration details
OpenTelemetry
The OpenTelemetry plugin is designed to receive telemetry data such as traces, metrics, and logs from clients and agents implementing OpenTelemetry via gRPC. This plugin initiates a gRPC service that listens for incoming telemetry data, making it distinct from standard plugins that collect metrics at defined intervals. The OpenTelemetry ecosystem aids developers in observing and understanding their applications’ performance by providing a vendor-neutral way to instrument, generate, collect, and export telemetry data. Key features of this plugin include customizable connection timeouts, adjustable maximum message sizes for incoming data, and options for specifying span, log, and profile dimensions to tag the incoming metrics. With this flexibility, organizations can tailor their telemetry collection to meet precise observability requirements and ensure seamless data integration into systems like InfluxDB.
SQLite
The SQL output plugin writes Telegraf metrics to an SQL database using a dynamic schema where each metric type corresponds to a table. For SQLite, the plugin uses the modernc.org/sqlite driver and requires a DSN in the format of a file URI (e.g., ‘file:/path/to/telegraf.db?cache=shared’). This configuration leverages standard ANSI SQL for table creation and data insertion, ensuring compatibility with SQLite’s capabilities.
Configuration
OpenTelemetry
[[inputs.opentelemetry]]
## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
## address:port
# service_address = "0.0.0.0:4317"
## Override the default (5s) new connection timeout
# timeout = "5s"
## gRPC Maximum Message Size
# max_msg_size = "4MB"
## Override the default span attributes to be used as line protocol tags.
## These are always included as tags:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# span_dimensions = ["service.name", "span.name"]
## Override the default log record attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
## matches the span_dimensions value.
# log_record_dimensions = ["service.name"]
## Override the default profile attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - profile_id
## - address
## - sample
## - sample_name
## - sample_unit
## - sample_type
## - sample_type_unit
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# profile_dimensions = []
## Override the default (prometheus-v1) metrics schema.
## Supports: "prometheus-v1", "prometheus-v2"
## For more information about the alternatives, read the Prometheus input
## plugin notes.
# metrics_schema = "prometheus-v1"
## Optional TLS Config.
## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
##
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections.
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key.
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
SQLite
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "sqlite"
## Data source name
## For SQLite, the DSN is a filename or URL with the scheme "file:".
## Example: "file:/path/to/telegraf.db?cache=shared"
data_source_name = "file:/path/to/telegraf.db?cache=shared"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
OpenTelemetry
-
Unified Monitoring Across Services: Use the OpenTelemetry plugin to collect and consolidate telemetry data from various microservices within a Kubernetes environment. By instrumenting each service with OpenTelemetry, you can utilize this plugin to gather a holistic view of application performance and dependencies in real-time, enabling faster troubleshooting and improved reliability of complex systems.
-
Enhanced Debugging with Traces: Implement this plugin to capture end-to-end traces of requests flowing through multiple services. For instance, when a user initiates a transaction that triggers several backend services, the OpenTelemetry plugin can record detailed traces that highlight performance bottlenecks, giving developers the necessary insights to debug issues and optimize their code.
-
Dynamic Load Testing and Performance Monitoring: Leverage the capabilities of this plugin during load testing phases by collecting live metrics and traces under simulated higher loads. This approach helps to evaluate the resilience of the application components and identify potential performance degradations preemptively, ensuring a smooth user experience in production.
-
Integrated Logging and Metrics for Real-Time Monitoring: Combine the OpenTelemetry plugin with logging frameworks to gather real-time logs alongside metric data, creating a powerful observability platform. For example, integrate it within a CI/CD pipeline to monitor builds and deployments, while collecting logs that help diagnose failures or performance issues in real-time.
SQLite
- Local Monitoring Storage: Configure the plugin to write metrics to a local SQLite database file. This is ideal for lightweight deployments where setting up a full-scale database server is not required.
- Embedded Applications: Use SQLite as the backend for applications embedded in edge devices, benefiting from its file-based architecture and minimal resource requirements.
- Quick Setup for Testing: Leverage SQLite’s ease of use to quickly set up a testing environment for Telegraf metrics collection without the need for external database services.
- Custom Schema Management: Adjust the table creation templates to predefine your schema if you require specific column types or indexes, ensuring compatibility with your application’s needs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration