OpenTelemetry and Snowflake Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider OpenTelemetry and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin receives traces, metrics, and logs from OpenTelemetry clients and agents via gRPC, enabling comprehensive observability of applications.

Telegraf’s SQL plugin allows seamless metric storage in SQL databases. When configured for Snowflake, it employs a specialized DSN format and dynamic table creation to map metrics to the appropriate schema.

Integration details

OpenTelemetry

The OpenTelemetry plugin is designed to receive telemetry data such as traces, metrics, and logs from clients and agents implementing OpenTelemetry via gRPC. This plugin initiates a gRPC service that listens for incoming telemetry data, making it distinct from standard plugins that collect metrics at defined intervals. The OpenTelemetry ecosystem aids developers in observing and understanding their applications’ performance by providing a vendor-neutral way to instrument, generate, collect, and export telemetry data. Key features of this plugin include customizable connection timeouts, adjustable maximum message sizes for incoming data, and options for specifying span, log, and profile dimensions to tag the incoming metrics. With this flexibility, organizations can tailor their telemetry collection to meet precise observability requirements and ensure seamless data integration into systems like InfluxDB.

Snowflake

Telegraf’s SQL plugin is engineered to dynamically write metrics into an SQL database by creating tables and columns based on the incoming data. When configured for Snowflake, it employs the gosnowflake driver, which uses a DSN that encapsulates credentials, account details, and database configuration in a compact format. This setup allows for the automatic generation of tables where each metric is recorded with precise timestamps, thereby ensuring detailed historical tracking. Although the integration is considered experimental, it leverages Snowflake’s powerful data warehousing capabilities, making it suitable for scalable, cloud-based analytics and reporting solutions.

Configuration

OpenTelemetry

[[inputs.opentelemetry]]
  ## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
  ## address:port
  # service_address = "0.0.0.0:4317"

  ## Override the default (5s) new connection timeout
  # timeout = "5s"

  ## gRPC Maximum Message Size
  # max_msg_size = "4MB"

  ## Override the default span attributes to be used as line protocol tags.
  ## These are always included as tags:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # span_dimensions = ["service.name", "span.name"]

  ## Override the default log record attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  ## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
  ## matches the span_dimensions value.
  # log_record_dimensions = ["service.name"]

  ## Override the default profile attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - profile_id
  ## - address
  ## - sample
  ## - sample_name
  ## - sample_unit
  ## - sample_type
  ## - sample_type_unit
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # profile_dimensions = []

  ## Override the default (prometheus-v1) metrics schema.
  ## Supports: "prometheus-v1", "prometheus-v2"
  ## For more information about the alternatives, read the Prometheus input
  ## plugin notes.
  # metrics_schema = "prometheus-v1"

  ## Optional TLS Config.
  ## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
  ##
  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections.
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
  ## Add service certificate and key.
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

Snowflake

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "snowflake"

  ## Data source name
  ## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
  ## Example DSN: "username:password@account/warehouse/db/schema"
  data_source_name = "username:password@account/warehouse/db/schema"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

Input and output integration examples

OpenTelemetry

  1. Unified Monitoring Across Services: Use the OpenTelemetry plugin to collect and consolidate telemetry data from various microservices within a Kubernetes environment. By instrumenting each service with OpenTelemetry, you can utilize this plugin to gather a holistic view of application performance and dependencies in real-time, enabling faster troubleshooting and improved reliability of complex systems.

  2. Enhanced Debugging with Traces: Implement this plugin to capture end-to-end traces of requests flowing through multiple services. For instance, when a user initiates a transaction that triggers several backend services, the OpenTelemetry plugin can record detailed traces that highlight performance bottlenecks, giving developers the necessary insights to debug issues and optimize their code.

  3. Dynamic Load Testing and Performance Monitoring: Leverage the capabilities of this plugin during load testing phases by collecting live metrics and traces under simulated higher loads. This approach helps to evaluate the resilience of the application components and identify potential performance degradations preemptively, ensuring a smooth user experience in production.

  4. Integrated Logging and Metrics for Real-Time Monitoring: Combine the OpenTelemetry plugin with logging frameworks to gather real-time logs alongside metric data, creating a powerful observability platform. For example, integrate it within a CI/CD pipeline to monitor builds and deployments, while collecting logs that help diagnose failures or performance issues in real-time.

Snowflake

  1. Cloud-Based Data Lake Integration: Utilize the plugin to stream real-time metrics from various sources into Snowflake, enabling the creation of a centralized data lake. This integration supports complex analytics and machine learning workflows on cloud data.

  2. Dynamic Business Intelligence Dashboards: Leverage the plugin to automatically generate tables from incoming metrics and feed them into BI tools. This allows businesses to create dynamic dashboards that visualize performance trends and operational insights without manual schema management.

  3. Scalable IoT Analytics: Deploy the plugin to capture high-frequency data from IoT devices into Snowflake. This use case facilitates the aggregation and analysis of sensor data, enabling predictive maintenance and real-time monitoring at scale.

  4. Historical Trend Analysis for Compliance: Use the plugin to log and archive detailed metric data in Snowflake, which can then be queried for long-term trend analysis and compliance reporting. This setup ensures that organizations can maintain a robust audit trail and perform forensic analysis if needed.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration