OpenStack and InfluxDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin collects metrics from essential OpenStack services, facilitating the monitoring and management of cloud infrastructures.
The InfluxDB plugin writes metrics to the InfluxDB HTTP service, allowing for efficient storage and retrieval of time series data.
Integration details
OpenStack
The OpenStack plugin allows users to collect performance metrics from various OpenStack services such as CINDER, GLANCE, HEAT, KEYSTONE, NEUTRON, and NOVA. It supports multiple OpenStack APIs to fetch critical metrics related to these services, enabling comprehensive monitoring and management of cloud resources. As organizations increasingly adopt OpenStack for their cloud infrastructure, this plugin plays a vital role in providing insights into resource usage, availability, and performance across the cloud environment. Configuration options allow for customized polling intervals and filtering unwanted tags to optimize performance and cardinals.
InfluxDB
The InfluxDB Telegraf plugin serves to send metrics to the InfluxDB HTTP API, facilitating the storage and query of time series data in a structured manner. Integrating seamlessly with InfluxDB, this plugin provides essential features such as token-based authentication and support for multiple InfluxDB cluster nodes, ensuring reliable and scalable data ingestion. Through its configurability, users can specify options like organization, destination buckets, and HTTP-specific settings, providing flexibility to tailor how data is sent and stored. The plugin also supports secret management for sensitive data, which enhances security in production environments. This plugin is particularly beneficial in modern observability stacks where real-time analytics and storage of time series data are crucial.
Configuration
OpenStack
[[inputs.openstack]]
## The recommended interval to poll is '30m'
## The identity endpoint to authenticate against and get the service catalog from.
authentication_endpoint = "https://my.openstack.cloud:5000"
## The domain to authenticate against when using a V3 identity endpoint.
# domain = "default"
## The project to authenticate as.
# project = "admin"
## User authentication credentials. Must have admin rights.
username = "admin"
password = "password"
## Available services are:
## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
## "networks", "nova_services", "ports", "projects", "servers",
## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
## "volumes"
# enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]
## Query all instances of all tenants for the volumes and server services
## NOTE: Usually this is only permitted for administrators!
# query_all_tenants = true
## output secrets (such as adminPass(for server) and UserID(for volume)).
# output_secrets = false
## Amount of time allowed to complete the HTTP(s) request.
# timeout = "5s"
## HTTP Proxy support
# http_proxy_url = ""
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Options for tags received from Openstack
# tag_prefix = "openstack_tag_"
# tag_value = "true"
## Timestamp format for timestamp data received from Openstack.
## If false format is unix nanoseconds.
# human_readable_timestamps = false
## Measure Openstack call duration
# measure_openstack_requests = false
InfluxDB
[[outputs.influxdb]]
## The full HTTP or UDP URL for your InfluxDB instance.
##
## Multiple URLs can be specified for a single cluster, only ONE of the
## urls will be written to each interval.
# urls = ["unix:///var/run/influxdb.sock"]
# urls = ["udp://127.0.0.1:8089"]
# urls = ["http://127.0.0.1:8086"]
## Local address to bind when connecting to the server
## If empty or not set, the local address is automatically chosen.
# local_address = ""
## The target database for metrics; will be created as needed.
## For UDP url endpoint database needs to be configured on server side.
# database = "telegraf"
## The value of this tag will be used to determine the database. If this
## tag is not set the 'database' option is used as the default.
# database_tag = ""
## If true, the 'database_tag' will not be included in the written metric.
# exclude_database_tag = false
## If true, no CREATE DATABASE queries will be sent. Set to true when using
## Telegraf with a user without permissions to create databases or when the
## database already exists.
# skip_database_creation = false
## Name of existing retention policy to write to. Empty string writes to
## the default retention policy. Only takes effect when using HTTP.
# retention_policy = ""
## The value of this tag will be used to determine the retention policy. If this
## tag is not set the 'retention_policy' option is used as the default.
# retention_policy_tag = ""
## If true, the 'retention_policy_tag' will not be included in the written metric.
# exclude_retention_policy_tag = false
## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
## Only takes effect when using HTTP.
# write_consistency = "any"
## Timeout for HTTP messages.
# timeout = "5s"
## HTTP Basic Auth
# username = "telegraf"
# password = "metricsmetricsmetricsmetrics"
## HTTP User-Agent
# user_agent = "telegraf"
## UDP payload size is the maximum packet size to send.
# udp_payload = "512B"
## Optional TLS Config for use on HTTP connections.
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## HTTP Proxy override, if unset values the standard proxy environment
## variables are consulted to determine which proxy, if any, should be used.
# http_proxy = "http://corporate.proxy:3128"
## Additional HTTP headers
# http_headers = {"X-Special-Header" = "Special-Value"}
## HTTP Content-Encoding for write request body, can be set to "gzip" to
## compress body or "identity" to apply no encoding.
# content_encoding = "gzip"
## When true, Telegraf will output unsigned integers as unsigned values,
## i.e.: "42u". You will need a version of InfluxDB supporting unsigned
## integer values. Enabling this option will result in field type errors if
## existing data has been written.
# influx_uint_support = false
## When true, Telegraf will omit the timestamp on data to allow InfluxDB
## to set the timestamp of the data during ingestion. This is generally NOT
## what you want as it can lead to data points captured at different times
## getting omitted due to similar data.
# influx_omit_timestamp = false
Input and output integration examples
OpenStack
-
Cross-Cloud Management: Leverage the OpenStack plugin to monitor and manage multiple OpenStack clouds from a single Telegraf instance. By aggregating metrics across different clouds, organizations can gain insights into resource utilization and optimize their cloud architecture for cost and performance.
-
Automated Scaling Based on Metrics: Integrate the metrics gathered from OpenStack into an automated scaling solution. For example, if the plugin detects that a specific service’s performance is degraded, it can trigger auto-scaling rules to launch additional instances, ensuring that system performance remains optimal under varying workloads.
-
Performance Monitoring Dashboard: Use data collected by the OpenStack Telegraf plugin to power real-time monitoring dashboards. This setup provides visualizations of key metrics from OpenStack services, enabling stakeholders to quickly identify trends, pinpoint issues, and make data-driven decisions in managing their cloud infrastructure.
-
Reporting and Analysis of Service Availability: By utilizing the metrics collected from various OpenStack services, teams can generate detailed reports on service availability and performance over time. This information can help identify recurring issues, improve service delivery, and make informed decisions regarding changes in infrastructure or service configuration.
InfluxDB
-
Real-Time System Monitoring: Utilize the InfluxDB plugin to capture and store metrics from a range of system components, such as CPU usage, memory consumption, and disk I/O. By pushing these metrics into InfluxDB, you can create a live dashboard that visualizes system performance in real time. This setup not only helps in identifying performance bottlenecks but also assists in proactive capacity planning by analyzing trends over time.
-
Performance Tracking for Web Applications: Automatically gather and push metrics related to web application performance, such as request durations, error rates, and user interactions, to InfluxDB. By employing this plugin in your monitoring stack, you can use the stored metrics to generate reports and analyses that help understand user behavior and application efficiency, thus guiding development and optimization efforts.
-
IoT Data Aggregation: Leverage the InfluxDB Telegraf plugin to collect sensor data from various IoT devices and store it in a centralized InfluxDB instance. This use case enables you to analyze trends and patterns in environmental or machine data over time, facilitating smarter decisions and predictive maintenance strategies. By integrating IoT data into InfluxDB, organizations can harness the power of historical data analysis to drive innovation and operational efficiency.
-
Analyzing Historical Metrics for Forecasting: Set up the InfluxDB plugin to send historical metric data into InfluxDB and use it to drive forecasting models. By analyzing past performance metrics, you can create predictive models that forecast future trends and demands. This application is particularly useful for business intelligence purposes, helping organizations prepare for fluctuations in resource needs based on historical usage patterns.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration