OpenStack and Clickhouse Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin collects metrics from essential OpenStack services, facilitating the monitoring and management of cloud infrastructures.
Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.
Integration details
OpenStack
The OpenStack plugin allows users to collect performance metrics from various OpenStack services such as CINDER, GLANCE, HEAT, KEYSTONE, NEUTRON, and NOVA. It supports multiple OpenStack APIs to fetch critical metrics related to these services, enabling comprehensive monitoring and management of cloud resources. As organizations increasingly adopt OpenStack for their cloud infrastructure, this plugin plays a vital role in providing insights into resource usage, availability, and performance across the cloud environment. Configuration options allow for customized polling intervals and filtering unwanted tags to optimize performance and cardinals.
Clickhouse
Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.
Configuration
OpenStack
[[inputs.openstack]]
## The recommended interval to poll is '30m'
## The identity endpoint to authenticate against and get the service catalog from.
authentication_endpoint = "https://my.openstack.cloud:5000"
## The domain to authenticate against when using a V3 identity endpoint.
# domain = "default"
## The project to authenticate as.
# project = "admin"
## User authentication credentials. Must have admin rights.
username = "admin"
password = "password"
## Available services are:
## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
## "networks", "nova_services", "ports", "projects", "servers",
## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
## "volumes"
# enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]
## Query all instances of all tenants for the volumes and server services
## NOTE: Usually this is only permitted for administrators!
# query_all_tenants = true
## output secrets (such as adminPass(for server) and UserID(for volume)).
# output_secrets = false
## Amount of time allowed to complete the HTTP(s) request.
# timeout = "5s"
## HTTP Proxy support
# http_proxy_url = ""
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Options for tags received from Openstack
# tag_prefix = "openstack_tag_"
# tag_value = "true"
## Timestamp format for timestamp data received from Openstack.
## If false format is unix nanoseconds.
# human_readable_timestamps = false
## Measure Openstack call duration
# measure_openstack_requests = false
Clickhouse
[[outputs.sql]]
## Database driver
## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
driver = "clickhouse"
## Data source name
## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
## Example DSN: "tcp://localhost:9000?debug=true"
data_source_name = "tcp://localhost:9000?debug=true"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion for ClickHouse.
## The conversion maps Telegraf metric types to ClickHouse native data types.
[outputs.sql.convert]
conversion_style = "literal"
integer = "Int64"
text = "String"
timestamp = "DateTime"
defaultvalue = "String"
unsigned = "UInt64"
bool = "UInt8"
real = "Float64"
Input and output integration examples
OpenStack
-
Cross-Cloud Management: Leverage the OpenStack plugin to monitor and manage multiple OpenStack clouds from a single Telegraf instance. By aggregating metrics across different clouds, organizations can gain insights into resource utilization and optimize their cloud architecture for cost and performance.
-
Automated Scaling Based on Metrics: Integrate the metrics gathered from OpenStack into an automated scaling solution. For example, if the plugin detects that a specific service’s performance is degraded, it can trigger auto-scaling rules to launch additional instances, ensuring that system performance remains optimal under varying workloads.
-
Performance Monitoring Dashboard: Use data collected by the OpenStack Telegraf plugin to power real-time monitoring dashboards. This setup provides visualizations of key metrics from OpenStack services, enabling stakeholders to quickly identify trends, pinpoint issues, and make data-driven decisions in managing their cloud infrastructure.
-
Reporting and Analysis of Service Availability: By utilizing the metrics collected from various OpenStack services, teams can generate detailed reports on service availability and performance over time. This information can help identify recurring issues, improve service delivery, and make informed decisions regarding changes in infrastructure or service configuration.
Clickhouse
-
Real-Time Analytics for High-Volume Data: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.
-
Time-Series Data Warehousing: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.
-
Scalable Monitoring in Distributed Environments: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.
-
Optimized Storage for IoT Deployments: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration