NSQ and Thanos Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The NSQ Telegraf plugin reads metrics from the NSQD messaging system, allowing for real-time data processing and monitoring.
This plugin sends metrics from Telegraf to Thanos using the Prometheus remote write protocol over HTTP, allowing efficient and scalable ingestion into Thanos Receive components.
Integration details
NSQ
The NSQ plugin interfaces with NSQ, a real-time messaging platform, enabling the reading of messages from NSQD. This plugin is categorized as a service plugin, meaning it actively listens for metrics and events rather than polling them at regular intervals. With an emphasis on reliability, it prevents data loss by tracking undelivered messages until they are acknowledged by outputs. The plugin allows for configurations such as specifying NSQLookupd endpoints, topics, and channels, and it supports multiple data formats for flexibility in data handling.
Thanos
Telegraf’s HTTP plugin can send metrics directly to Thanos via its Remote Write-compatible Receive component. By setting the data format to prometheusremotewrite
, Telegraf can serialize metrics into the same protobuf-based format used by native Prometheus clients. This setup enables high-throughput, low-latency metric ingestion into Thanos, facilitating centralized observability at scale. It is particularly useful in hybrid environments where Telegraf is collecting metrics from systems outside Prometheus’ native reach, such as SNMP devices, Windows hosts, or custom apps, and streams them directly to Thanos for long-term storage and global querying.
Configuration
NSQ
# Read metrics from NSQD topic(s)
[[inputs.nsq_consumer]]
## Server option still works but is deprecated, we just prepend it to the nsqd array.
# server = "localhost:4150"
## An array representing the NSQD TCP HTTP Endpoints
nsqd = ["localhost:4150"]
## An array representing the NSQLookupd HTTP Endpoints
nsqlookupd = ["localhost:4161"]
topic = "telegraf"
channel = "consumer"
max_in_flight = 100
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Thanos
[[outputs.http]]
## Thanos Receive endpoint for remote write
url = "http://thanos-receive.example.com/api/v1/receive"
## HTTP method
method = "POST"
## Data format set to Prometheus remote write
data_format = "prometheusremotewrite"
## Optional headers (authorization, etc.)
# [outputs.http.headers]
# Authorization = "Bearer YOUR_TOKEN"
## Optional TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
## Request timeout
timeout = "10s"
Input and output integration examples
NSQ
-
Real-Time Analytics Dashboard: Integrate this plugin with a visualization tool to create a dashboard that displays real-time metrics from various topics in NSQ. By subscribing to specific topics, users can monitor system health and application performance dynamically, allowing for immediate insights and timely responses to any anomalies.
-
Event-Driven Automation: Combine NSQ with a serverless architecture to trigger automated workflows based on incoming messages. This use case could involve processing data for machine learning models or responding to user actions in applications, thus streamlining operations and enhancing user experience through rapid processing.
-
Multi-Service Communication Hub: Use the NSQ plugin to act as a centralized messaging hub among different microservices in a distributed architecture. By enabling services to communicate through NSQ, developers can ensure reliable message delivery while maintaining decoupled service interactions, significantly improving scalability and resilience.
-
Metrics Aggregation for Enhanced Monitoring: Implement the NSQ plugin to aggregate metrics from multiple sources before sending them to an analytics tool. This setup enables businesses to consolidate data from various applications and services, creating a unified view for better decision-making and strategic planning.
Thanos
-
Agentless Cloud Monitoring: Deploy Telegraf agents across cloud VMs to collect system and application metrics, then stream them directly into Thanos using Remote Write. This provides centralized observability without requiring Prometheus nodes at each location.
-
Scalable Windows Host Monitoring: Use Telegraf on Windows machines to collect OS-level metrics and send them via Remote Write to Thanos Receive. This enables observability across heterogeneous environments with native Prometheus support only on Linux.
-
Cross-Region Metrics Federation: Telegraf agents in multiple geographic regions can push data to region-local Thanos Receivers using this plugin. From there, Thanos can deduplicate and query metrics globally, reducing latency and network egress costs.
-
Integrating Third-Party Data into Thanos: Collect metrics from custom telemetry sources such as REST APIs or proprietary logs using Telegraf inputs and forward them to Thanos via Remote Write. This brings non-native data into a Prometheus-compatible, long-term analytics pipeline.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration