NSQ and Mimir Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider NSQ and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The NSQ Telegraf plugin reads metrics from the NSQD messaging system, allowing for real-time data processing and monitoring.

This plugin sends Telegraf metrics directly to Grafana’s Mimir database using HTTP, providing scalable and efficient long-term storage and analysis for Prometheus-compatible metrics.

Integration details

NSQ

The NSQ plugin interfaces with NSQ, a real-time messaging platform, enabling the reading of messages from NSQD. This plugin is categorized as a service plugin, meaning it actively listens for metrics and events rather than polling them at regular intervals. With an emphasis on reliability, it prevents data loss by tracking undelivered messages until they are acknowledged by outputs. The plugin allows for configurations such as specifying NSQLookupd endpoints, topics, and channels, and it supports multiple data formats for flexibility in data handling.

Mimir

Grafana Mimir supports the Prometheus Remote Write protocol, enabling Telegraf collected metrics to be efficiently ingested into Mimir clusters for large-scale, long-term storage. This integration leverages Prometheus’s well-established standards, allowing users to combine Telegraf’s extensive data collection capabilities with Mimir’s advanced features, such as query federation, multi-tenancy, high availability, and cost-efficient storage. Grafana Mimir’s architecture is optimized for handling high volumes of metric data and delivering fast query responses, making it ideal for complex monitoring environments and distributed systems.

Configuration

NSQ

# Read metrics from NSQD topic(s)
[[inputs.nsq_consumer]]
  ## Server option still works but is deprecated, we just prepend it to the nsqd array.
  # server = "localhost:4150"

  ## An array representing the NSQD TCP HTTP Endpoints
  nsqd = ["localhost:4150"]

  ## An array representing the NSQLookupd HTTP Endpoints
  nsqlookupd = ["localhost:4161"]
  topic = "telegraf"
  channel = "consumer"
  max_in_flight = 100

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Mimir

[[outputs.http]]
  url = "http://data-load-balancer-backend-1:9009/api/v1/push"
  data_format = "prometheusremotewrite"
  username = "*****"
  password = "******"
  [outputs.http.headers]
     Content-Type = "application/x-protobuf"
     Content-Encoding = "snappy"
     X-Scope-OrgID = "****"

Input and output integration examples

NSQ

  1. Real-Time Analytics Dashboard: Integrate this plugin with a visualization tool to create a dashboard that displays real-time metrics from various topics in NSQ. By subscribing to specific topics, users can monitor system health and application performance dynamically, allowing for immediate insights and timely responses to any anomalies.

  2. Event-Driven Automation: Combine NSQ with a serverless architecture to trigger automated workflows based on incoming messages. This use case could involve processing data for machine learning models or responding to user actions in applications, thus streamlining operations and enhancing user experience through rapid processing.

  3. Multi-Service Communication Hub: Use the NSQ plugin to act as a centralized messaging hub among different microservices in a distributed architecture. By enabling services to communicate through NSQ, developers can ensure reliable message delivery while maintaining decoupled service interactions, significantly improving scalability and resilience.

  4. Metrics Aggregation for Enhanced Monitoring: Implement the NSQ plugin to aggregate metrics from multiple sources before sending them to an analytics tool. This setup enables businesses to consolidate data from various applications and services, creating a unified view for better decision-making and strategic planning.

Mimir

  1. Enterprise-Scale Kubernetes Monitoring: Integrate Telegraf with Grafana Mimir to stream metrics from Kubernetes clusters at enterprise scale. This enables comprehensive visibility, improved resource allocation, and proactive troubleshooting across hundreds of clusters, leveraging Mimir’s horizontal scalability and high availability.

  2. Multi-tenant SaaS Application Observability: Use this plugin to centralize metrics from diverse SaaS tenants into Grafana Mimir, enabling tenant isolation and accurate billing based on resource usage. This approach provides reliable observability, efficient cost management, and secure multi-tenancy support.

  3. Global Edge Network Performance Tracking: Stream latency and availability metrics from globally distributed edge servers into Grafana Mimir. Organizations can quickly identify performance degradation or outages, leveraging Mimir’s fast querying capabilities to ensure optimal service reliability and user experience.

  4. Real-Time Analytics for High-Volume Microservices: Implement Telegraf metrics collection in high-volume microservices architectures, feeding data into Grafana Mimir for real-time analytics and anomaly detection. Mimir’s powerful querying enables teams to detect anomalies and quickly respond, maintaining high service availability and performance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration