NSQ and InfluxDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The NSQ Telegraf plugin reads metrics from the NSQD messaging system, allowing for real-time data processing and monitoring.

The InfluxDB plugin writes metrics to the InfluxDB HTTP service, allowing for efficient storage and retrieval of time series data.

Integration details

NSQ

The NSQ plugin interfaces with NSQ, a real-time messaging platform, enabling the reading of messages from NSQD. This plugin is categorized as a service plugin, meaning it actively listens for metrics and events rather than polling them at regular intervals. With an emphasis on reliability, it prevents data loss by tracking undelivered messages until they are acknowledged by outputs. The plugin allows for configurations such as specifying NSQLookupd endpoints, topics, and channels, and it supports multiple data formats for flexibility in data handling.

InfluxDB

The InfluxDB Telegraf plugin serves to send metrics to the InfluxDB HTTP API, facilitating the storage and query of time series data in a structured manner. Integrating seamlessly with InfluxDB, this plugin provides essential features such as token-based authentication and support for multiple InfluxDB cluster nodes, ensuring reliable and scalable data ingestion. Through its configurability, users can specify options like organization, destination buckets, and HTTP-specific settings, providing flexibility to tailor how data is sent and stored. The plugin also supports secret management for sensitive data, which enhances security in production environments. This plugin is particularly beneficial in modern observability stacks where real-time analytics and storage of time series data are crucial.

Configuration

NSQ

# Read metrics from NSQD topic(s)
[[inputs.nsq_consumer]]
  ## Server option still works but is deprecated, we just prepend it to the nsqd array.
  # server = "localhost:4150"

  ## An array representing the NSQD TCP HTTP Endpoints
  nsqd = ["localhost:4150"]

  ## An array representing the NSQLookupd HTTP Endpoints
  nsqlookupd = ["localhost:4161"]
  topic = "telegraf"
  channel = "consumer"
  max_in_flight = 100

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

InfluxDB

[[outputs.influxdb]]
  ## The full HTTP or UDP URL for your InfluxDB instance.
  ##
  ## Multiple URLs can be specified for a single cluster, only ONE of the
  ## urls will be written to each interval.
  # urls = ["unix:///var/run/influxdb.sock"]
  # urls = ["udp://127.0.0.1:8089"]
  # urls = ["http://127.0.0.1:8086"]

  ## Local address to bind when connecting to the server
  ## If empty or not set, the local address is automatically chosen.
  # local_address = ""

  ## The target database for metrics; will be created as needed.
  ## For UDP url endpoint database needs to be configured on server side.
  # database = "telegraf"

  ## The value of this tag will be used to determine the database.  If this
  ## tag is not set the 'database' option is used as the default.
  # database_tag = ""

  ## If true, the 'database_tag' will not be included in the written metric.
  # exclude_database_tag = false

  ## If true, no CREATE DATABASE queries will be sent.  Set to true when using
  ## Telegraf with a user without permissions to create databases or when the
  ## database already exists.
  # skip_database_creation = false

  ## Name of existing retention policy to write to.  Empty string writes to
  ## the default retention policy.  Only takes effect when using HTTP.
  # retention_policy = ""

  ## The value of this tag will be used to determine the retention policy.  If this
  ## tag is not set the 'retention_policy' option is used as the default.
  # retention_policy_tag = ""

  ## If true, the 'retention_policy_tag' will not be included in the written metric.
  # exclude_retention_policy_tag = false

  ## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
  ## Only takes effect when using HTTP.
  # write_consistency = "any"

  ## Timeout for HTTP messages.
  # timeout = "5s"

  ## HTTP Basic Auth
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"

  ## HTTP User-Agent
  # user_agent = "telegraf"

  ## UDP payload size is the maximum packet size to send.
  # udp_payload = "512B"

  ## Optional TLS Config for use on HTTP connections.
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## HTTP Proxy override, if unset values the standard proxy environment
  ## variables are consulted to determine which proxy, if any, should be used.
  # http_proxy = "http://corporate.proxy:3128"

  ## Additional HTTP headers
  # http_headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "gzip"

  ## When true, Telegraf will output unsigned integers as unsigned values,
  ## i.e.: "42u".  You will need a version of InfluxDB supporting unsigned
  ## integer values.  Enabling this option will result in field type errors if
  ## existing data has been written.
  # influx_uint_support = false

  ## When true, Telegraf will omit the timestamp on data to allow InfluxDB
  ## to set the timestamp of the data during ingestion. This is generally NOT
  ## what you want as it can lead to data points captured at different times
  ## getting omitted due to similar data.
  # influx_omit_timestamp = false

Input and output integration examples

NSQ

  1. Real-Time Analytics Dashboard: Integrate this plugin with a visualization tool to create a dashboard that displays real-time metrics from various topics in NSQ. By subscribing to specific topics, users can monitor system health and application performance dynamically, allowing for immediate insights and timely responses to any anomalies.

  2. Event-Driven Automation: Combine NSQ with a serverless architecture to trigger automated workflows based on incoming messages. This use case could involve processing data for machine learning models or responding to user actions in applications, thus streamlining operations and enhancing user experience through rapid processing.

  3. Multi-Service Communication Hub: Use the NSQ plugin to act as a centralized messaging hub among different microservices in a distributed architecture. By enabling services to communicate through NSQ, developers can ensure reliable message delivery while maintaining decoupled service interactions, significantly improving scalability and resilience.

  4. Metrics Aggregation for Enhanced Monitoring: Implement the NSQ plugin to aggregate metrics from multiple sources before sending them to an analytics tool. This setup enables businesses to consolidate data from various applications and services, creating a unified view for better decision-making and strategic planning.

InfluxDB

  1. Real-Time System Monitoring: Utilize the InfluxDB plugin to capture and store metrics from a range of system components, such as CPU usage, memory consumption, and disk I/O. By pushing these metrics into InfluxDB, you can create a live dashboard that visualizes system performance in real time. This setup not only helps in identifying performance bottlenecks but also assists in proactive capacity planning by analyzing trends over time.

  2. Performance Tracking for Web Applications: Automatically gather and push metrics related to web application performance, such as request durations, error rates, and user interactions, to InfluxDB. By employing this plugin in your monitoring stack, you can use the stored metrics to generate reports and analyses that help understand user behavior and application efficiency, thus guiding development and optimization efforts.

  3. IoT Data Aggregation: Leverage the InfluxDB Telegraf plugin to collect sensor data from various IoT devices and store it in a centralized InfluxDB instance. This use case enables you to analyze trends and patterns in environmental or machine data over time, facilitating smarter decisions and predictive maintenance strategies. By integrating IoT data into InfluxDB, organizations can harness the power of historical data analysis to drive innovation and operational efficiency.

  4. Analyzing Historical Metrics for Forecasting: Set up the InfluxDB plugin to send historical metric data into InfluxDB and use it to drive forecasting models. By analyzing past performance metrics, you can create predictive models that forecast future trends and demands. This application is particularly useful for business intelligence purposes, helping organizations prepare for fluctuations in resource needs based on historical usage patterns.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration