Nginx and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Nginx plugin for Telegraf is designed to collect status metrics from Nginx web servers, providing real-time insights into server operation metrics.
The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.
Integration details
Nginx
This plugin gathers status metrics from Nginx. It utilizes the ngx_http_stub_status_module to collect basic metrics related to the server’s performance. The plugin provides valuable insights into active connections, requests handled, and the current state of various metrics. This real-time data is essential for monitoring web server performance and ensuring optimal operations. The configuration allows users to specify the URL for the Nginx status endpoint, set timeouts, and configure TLS settings if necessary.
MongoDB
This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.
Configuration
Nginx
[[inputs.nginx]]
## An array of Nginx stub_status URI to gather stats.
urls = ["http://localhost/server_status"]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## HTTP response timeout (default: 5s)
response_timeout = "5s"
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
Nginx
-
Web Performance Monitoring: Use the Nginx plugin to gather performance metrics from various Nginx servers across your infrastructure. By visualizing these metrics in real-time dashboards, teams can track performance trends, identify bottlenecks, and enhance the user experience on their web applications. Implementing such monitoring allows businesses to proactively address performance issues before they impact end-users.
-
Load Balancer Monitoring: Integrate this plugin with your load balancers to track the performance of backend Nginx servers. By collecting statistics like ‘active connections’ and ‘requests handled’, your operations team can ensure that traffic is flowing optimally and that no single server is overwhelmed. This proactive approach to load balancing prevents service downtime and enhances user experience.
-
Automated Alerting Systems: Combine the Nginx plugin with alerting services to automatically notify your team when a server’s metrics exceed predefined thresholds. For instance, if the number of active connections is too high, the system can trigger alerts so that corrective actions can be taken immediately, thus maintaining service quality and reliability.
-
Historical Data Analysis: Store the metrics collected by the Nginx plugin in a time-series database to analyze historical performance trends. This analysis can uncover periods of high traffic or poor performance, allowing for data-driven decisions about infrastructure scaling and optimization. By understanding past trends, organizations can better prepare for future demands.
MongoDB
-
Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.
-
Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.
-
Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.
-
Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration