NATS and MariaDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The NATS Consumer Input Plugin enables real-time data consumption from NATS messaging subjects, integrating seamlessly into the Telegraf data pipeline for monitoring and metrics gathering.
This plugin writes metrics from Telegraf directly into MariaDB using parameterized SQL INSERT statements, offering a flexible way to store metrics in structured, relational tables.
Integration details
NATS
The NATS Consumer Plugin allows Telegraf to read metrics from specified NATS subjects and create metrics based on supported input data formats. Utilizing a Queue Group allows multiple instances of Telegraf to read from a NATS cluster in parallel, enhancing throughput and reliability. This plugin also supports various authentication methods, including username/password, NATS credentials files, and nkey seed files, ensuring secure communication with the NATS servers. It is particularly useful in environments where data persistence and message reliability are critical, thanks to features such as JetStream that facilitate the consumption of historical messages. Additionally, the ability to configure various operational parameters makes this plugin suitable for high-throughput scenarios while maintaining performance integrity.
MariaDB
The SQL output plugin in Telegraf enables direct writing of metrics into SQL-compatible databases like MariaDB by executing parameterized SQL statements. With support for the MySQL driver, the plugin seamlessly integrates with MariaDB for reliable, structured metric storage. This setup is ideal for users who prefer SQL-based analytics or want to store metrics alongside business data for unified querying. MariaDB is a community-developed, enterprise-grade fork of MySQL that emphasizes performance, security, and openness. The plugin supports inserting time series metrics into custom schemas, enabling flexible analytics and integrations with BI tools like Metabase or Grafana using SQL connectors.
Configuration
NATS
[[inputs.nats_consumer]]
## urls of NATS servers
servers = ["nats://localhost:4222"]
## subject(s) to consume
## If you use jetstream you need to set the subjects
## in jetstream_subjects
subjects = ["telegraf"]
## jetstream subjects
## jetstream is a streaming technology inside of nats.
## With jetstream the nats-server persists messages and
## a consumer can consume historical messages. This is
## useful when telegraf needs to restart it don't miss a
## message. You need to configure the nats-server.
## https://docs.nats.io/nats-concepts/jetstream.
jetstream_subjects = ["js_telegraf"]
## name a queue group
queue_group = "telegraf_consumers"
## Optional authentication with username and password credentials
# username = ""
# password = ""
## Optional authentication with NATS credentials file (NATS 2.0)
# credentials = "/etc/telegraf/nats.creds"
## Optional authentication with nkey seed file (NATS 2.0)
# nkey_seed = "/etc/telegraf/seed.txt"
## Use Transport Layer Security
# secure = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Sets the limits for pending msgs and bytes for each subscription
## These shouldn't need to be adjusted except in very high throughput scenarios
# pending_message_limit = 65536
# pending_bytes_limit = 67108864
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
MariaDB
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
Input and output integration examples
NATS
-
Real-Time Analytics Dashboard: Utilize the NATS plugin to gather metrics from various NATS subjects in real time and feed them into a centralized analytics dashboard. This setup allows for immediate visibility into live application performance, enabling teams to react swiftly to operational issues or performance degradation.
-
Distributed System Monitoring: Deploy multiple instances of Telegraf configured with the NATS plugin across a distributed architecture. This approach allows teams to aggregate metrics from various microservices efficiently, providing a holistic view of system health and performance while ensuring no messages are dropped during transmission.
-
Historical Message Recovery: Leverage the capabilities of NATS JetStream along with this plugin to recover and process historical messages after Telegraf has been restarted. This feature is particularly beneficial for applications that require high reliability, ensuring that no critical metrics are lost even in case of service disruptions.
-
Dynamic Load Balancing: Implement a dynamic load balancing scenario where Telegraf instances consume messages from a NATS cluster based on load. Adjust the queue group settings to control the number of active consumers, allowing for better resource utilization and performance scaling as demand fluctuations occur.
MariaDB
-
Business Intelligence Integration: Store application performance metrics directly into MariaDB and connect it to BI tools like Metabase or Apache Superset. This setup allows blending of operational data with business KPIs for unified dashboards, enhancing visibility across departments.
-
Compliance Reporting with Historical Metrics: Use this plugin to log metrics into MariaDB for audit and compliance use cases. The relational model enables precise querying of past performance indicators with timestamped entries, supporting regulatory documentation.
-
Custom Alerting Based on SQL Logic: Insert metrics into MariaDB and use custom SQL queries to define alert thresholds or conditions. Combined with cron jobs or scheduled scripts, this enables advanced alerting workflows not possible with traditional metric platforms.
-
IoT Sensor Metrics Storage: Collect sensor data from IoT devices via Telegraf and store it in MariaDB using a normalized schema. This approach is cost-effective and integrates well with existing SQL-based systems for real-time or historical analysis.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration