NATS and Azure Data Explorer Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The NATS Consumer Input Plugin enables real-time data consumption from NATS messaging subjects, integrating seamlessly into the Telegraf data pipeline for monitoring and metrics gathering.
The Azure Data Explorer plugin allows integration of metrics collection with Azure Data Explorer, enabling users to analyze and query their telemetry data efficiently. With this plugin, users can configure ingestion settings to suit their needs and leverage Azure’s powerful analytical capabilities.
Integration details
NATS
The NATS Consumer Plugin allows Telegraf to read metrics from specified NATS subjects and create metrics based on supported input data formats. Utilizing a Queue Group allows multiple instances of Telegraf to read from a NATS cluster in parallel, enhancing throughput and reliability. This plugin also supports various authentication methods, including username/password, NATS credentials files, and nkey seed files, ensuring secure communication with the NATS servers. It is particularly useful in environments where data persistence and message reliability are critical, thanks to features such as JetStream that facilitate the consumption of historical messages. Additionally, the ability to configure various operational parameters makes this plugin suitable for high-throughput scenarios while maintaining performance integrity.
Azure Data Explorer
The Azure Data Explorer plugin allows users to write metrics, logs, and time series data collected from various Telegraf input plugins into Azure Data Explorer, Azure Synapse, and Real-Time Analytics in Fabric. This integration serves as a bridge, allowing applications and services to monitor their performance metrics or logs efficiently. Azure Data Explorer is optimized for analytics over large volumes of diverse data types, making it an excellent choice for real-time analytics and monitoring solutions in cloud environments. The plugin empowers users to configure metrics ingestion based on their requirements, define table schemas dynamically, and set various ingestion methods while retaining flexibility regarding roles and permissions needed for database operations. This supports scalable and secure monitoring setups for modern applications that utilize cloud services.
Configuration
NATS
[[inputs.nats_consumer]]
## urls of NATS servers
servers = ["nats://localhost:4222"]
## subject(s) to consume
## If you use jetstream you need to set the subjects
## in jetstream_subjects
subjects = ["telegraf"]
## jetstream subjects
## jetstream is a streaming technology inside of nats.
## With jetstream the nats-server persists messages and
## a consumer can consume historical messages. This is
## useful when telegraf needs to restart it don't miss a
## message. You need to configure the nats-server.
## https://docs.nats.io/nats-concepts/jetstream.
jetstream_subjects = ["js_telegraf"]
## name a queue group
queue_group = "telegraf_consumers"
## Optional authentication with username and password credentials
# username = ""
# password = ""
## Optional authentication with NATS credentials file (NATS 2.0)
# credentials = "/etc/telegraf/nats.creds"
## Optional authentication with nkey seed file (NATS 2.0)
# nkey_seed = "/etc/telegraf/seed.txt"
## Use Transport Layer Security
# secure = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Sets the limits for pending msgs and bytes for each subscription
## These shouldn't need to be adjusted except in very high throughput scenarios
# pending_message_limit = 65536
# pending_bytes_limit = 67108864
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Azure Data Explorer
[[outputs.azure_data_explorer]]
## The URI property of the Azure Data Explorer resource on Azure
## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
endpoint_url = ""
## The Azure Data Explorer database that the metrics will be ingested into.
## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
## ex: "exampledatabase"
database = ""
## Timeout for Azure Data Explorer operations
# timeout = "20s"
## Type of metrics grouping used when pushing to Azure Data Explorer.
## Default is "TablePerMetric" for one table per different metric.
## For more information, please check the plugin README.
# metrics_grouping_type = "TablePerMetric"
## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
# table_name = ""
## Creates tables and relevant mapping if set to true(default).
## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
# create_tables = true
## Ingestion method to use.
## Available options are
## - managed -- streaming ingestion with fallback to batched ingestion or the "queued" method below
## - queued -- queue up metrics data and process sequentially
# ingestion_type = "queued"
Input and output integration examples
NATS
-
Real-Time Analytics Dashboard: Utilize the NATS plugin to gather metrics from various NATS subjects in real time and feed them into a centralized analytics dashboard. This setup allows for immediate visibility into live application performance, enabling teams to react swiftly to operational issues or performance degradation.
-
Distributed System Monitoring: Deploy multiple instances of Telegraf configured with the NATS plugin across a distributed architecture. This approach allows teams to aggregate metrics from various microservices efficiently, providing a holistic view of system health and performance while ensuring no messages are dropped during transmission.
-
Historical Message Recovery: Leverage the capabilities of NATS JetStream along with this plugin to recover and process historical messages after Telegraf has been restarted. This feature is particularly beneficial for applications that require high reliability, ensuring that no critical metrics are lost even in case of service disruptions.
-
Dynamic Load Balancing: Implement a dynamic load balancing scenario where Telegraf instances consume messages from a NATS cluster based on load. Adjust the queue group settings to control the number of active consumers, allowing for better resource utilization and performance scaling as demand fluctuations occur.
Azure Data Explorer
-
Real-Time Monitoring Dashboard: By integrating metrics from various services into Azure Data Explorer using this plugin, organizations can build comprehensive dashboards that reflect real-time performance metrics. This allows teams to respond proactively to performance issues and optimize system health without delay.
-
Centralized Log Management: Utilize Azure Data Explorer to consolidate logs from multiple applications and services. By utilizing the plugin, organizations can streamline their log analysis processes, making it easier to search, filter, and derive insights from historical data accumulated over time.
-
Data-Driven Alerting Systems: Enhance monitoring capabilities by configuring alerts based on metrics sent via this plugin. Organizations can set thresholds and automate incident responses, significantly reducing downtime and improving the reliability of critical operations.
-
Machine Learning Model Training: By leveraging the data sent to Azure Data Explorer, organizations can perform large-scale analytics and prepare the data for feeding into machine learning models. This plugin enables the structuring of data that can subsequently be used for predictive analytics, leading to enhanced decision-making capabilities.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration