MQTT and MongoDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider MQTT and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The MQTT Telegraf plugin is designed to read from specified MQTT topics and create metrics, enabling users to leverage MQTT for real-time data collection and monitoring.

The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.

Integration details

MQTT

The MQTT plugin allows for reading metrics from specified MQTT topics, creating metrics using supported input data formats. This plugin operates as a service input, which listens for incoming metrics or events rather than gathering them at set intervals like normal plugins. The flexibility of the plugin is enhanced with support for various broker URLs, topics, and connection features, including Quality of Service (QoS) levels and persistent sessions. Its configuration options incorporate global settings to modify metrics and handle startup errors effectively. It also supports secret-store configurations for securing username and password options, ensuring secure connections to MQTT servers.

MongoDB

This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.

Configuration

MQTT


[[inputs.mqtt_consumer]]
  servers = ["tcp://127.0.0.1:1883"]
  topics = [
    "telegraf/host01/cpu",
    "telegraf/+/mem",
    "sensors/#",
  ]
  # topic_tag = "topic"
  # qos = 0
  # connection_timeout = "30s"
  # keepalive = "60s"
  # ping_timeout = "10s"
  # max_undelivered_messages = 1000
  # persistent_session = false
  # client_id = ""
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  # insecure_skip_verify = false
  # client_trace = false
  data_format = "influx"
  # [[inputs.mqtt_consumer.topic_parsing]]
  #   topic = ""
  #   measurement = ""
  #   tags = ""
  #   fields = ""
  #   [inputs.mqtt_consumer.topic_parsing.types]
  #      key = type

MongoDB

[[outputs.mongodb]]
              # connection string examples for mongodb
              dsn = "mongodb://localhost:27017"
              # dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"

              # overrides serverSelectionTimeoutMS in dsn if set
              # timeout = "30s"

              # default authentication, optional
              # authentication = "NONE"

              # for SCRAM-SHA-256 authentication
              # authentication = "SCRAM"
              # username = "root"
              # password = "***"

              # for x509 certificate authentication
              # authentication = "X509"
              # tls_ca = "ca.pem"
              # tls_key = "client.pem"
              # # tls_key_pwd = "changeme" # required for encrypted tls_key
              # insecure_skip_verify = false

              # database to store measurements and time series collections
              # database = "telegraf"

              # granularity can be seconds, minutes, or hours.
              # configuring this value will be based on your input collection frequency.
              # see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
              # granularity = "seconds"

              # optionally set a TTL to automatically expire documents from the measurement collections.
              # ttl = "360h"

Input and output integration examples

MQTT

  1. Smart Home Monitoring: Use the MQTT Consumer plugin to monitor various sensors in a smart home setup. In this scenario, the plugin can be configured to subscribe to topics for different devices, such as temperature, humidity, and energy consumption. By aggregating this data, homeowners can visualize trends and receive alerts for unusual patterns, enhancing the overall quality and efficiency of home automation systems.

  2. IoT Environmental Sensing: Deploy the MQTT Consumer to gather environmental data from sensors distributed across different locations. For instance, this can include readings from air quality sensors, temperature sensors, and noise level meters. The plugin can be configured to extract relevant tags and fields from the MQTT topics which allows for detailed analyses and reporting on environmental conditions at scale, supporting better decision making for urban planning or environmental initiatives.

  3. Real-Time Vehicle Tracking and Telemetry: Integrate the MQTT Consumer plugin within a vehicle telemetry system that collects data from various sensors in real-time. With the plugin, metrics related to vehicle performance, location, and fuel consumption can be sent to a centralized monitoring dashboard. This real-time telemetry data enables fleet managers to optimize routes, reduce fuel costs, and improve vehicle maintenance schedules through proactive data analysis.

  4. Agricultural Monitoring System: Leverage this plugin to collect data from agricultural sensors that monitor soil moisture, crop health, and weather conditions. The MQTT Consumer can subscribe to multiple topics associated with farming equipment and environmental sensors, allowing farmers to make data-driven decisions to improve crop yields while also conserving resources, enhancing sustainability in agriculture.

MongoDB

  1. Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.

  2. Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.

  3. Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.

  4. Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration