Modbus and Redis Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Modbus plugin allows you to collect data from Modbus devices using various communication methods, enhancing your ability to monitor and control industrial processes.
The Redis plugin enables users to send metrics collected by Telegraf directly to Redis. This integration is ideal for applications that require robust time series data storage and analysis.
Integration details
Modbus
The Modbus plugin collects discrete inputs, coils, input registers, and holding registers via Modbus TCP or Modbus RTU/ASCII.
Redis
The Redis Telegraf plugin is designed for writing metrics to RedisTimeSeries, a specialized Redis database module for time series data. This plugin facilitates the integration of Telegraf with RedisTimeSeries, allowing for the efficient storage and retrieval of timestamped data. With RedisTimeSeries, users can take advantage of enhanced capabilities for managing time series data, including aggregated views and range queries. The plugin offers various configuration options to enable the flexibility needed to connect securely to your Redis database, including support for Authentication, Timeouts, data type conversions, and TLS configurations. The underlying technology leverages Redis’ efficiency and scalability, making it an excellent choice for high-volume metric environments, where real-time processing is essential.
Configuration
Modbus
[[inputs.modbus]]
name = "Device"
slave_id = 1
timeout = "1s"
configuration_type = "register"
discrete_inputs = [
{ name = "start", address = [0]},
{ name = "stop", address = [1]},
{ name = "reset", address = [2]},
{ name = "emergency_stop", address = [3]},
]
coils = [
{ name = "motor1_run", address = [0]},
{ name = "motor1_jog", address = [1]},
{ name = "motor1_stop", address = [2]},
]
holding_registers = [
{ name = "power_factor", byte_order = "AB", data_type = "FIXED", scale=0.01, address = [8]},
{ name = "voltage", byte_order = "AB", data_type = "FIXED", scale=0.1, address = [0]},
{ name = "energy", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [5,6]},
{ name = "current", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [1,2]},
{ name = "frequency", byte_order = "AB", data_type = "UFIXED", scale=0.1, address = [7]},
{ name = "power", byte_order = "ABCD", data_type = "UFIXED", scale=0.1, address = [3,4]},
{ name = "firmware", byte_order = "AB", data_type = "STRING", address = [5, 6, 7, 8, 9, 10, 11, 12]},
]
input_registers = [
{ name = "tank_level", byte_order = "AB", data_type = "INT16", scale=1.0, address = [0]},
{ name = "tank_ph", byte_order = "AB", data_type = "INT16", scale=1.0, address = [1]},
{ name = "pump1_speed", byte_order = "ABCD", data_type = "INT32", scale=1.0, address = [3,4]},
]
Redis
[[outputs.redistimeseries]]
## The address of the RedisTimeSeries server.
address = "127.0.0.1:6379"
## Redis ACL credentials
# username = ""
# password = ""
# database = 0
## Timeout for operations such as ping or sending metrics
# timeout = "10s"
## Enable attempt to convert string fields to numeric values
## If "false" or in case the string value cannot be converted the string
## field will be dropped.
# convert_string_fields = true
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Modbus
- Basic Usage: To read from a single device, configure it with the device name and IP address, specifying the slave ID and registers of interest.
- Multiple Requests: You can define multiple requests to fetch data from different Modbus slave devices in a single configuration by specifying multiple
[[inputs.modbus.request]]
sections. - Data Processing: Utilize the scaling features to convert raw Modbus readings into useful metrics, adjusting for unit conversions as needed.
Redis
-
Monitoring IoT Sensor Data: Utilize the Redis Telegraf plugin to collect and store data from IoT sensors in real-time. By connecting the plugin to a RedisTimeSeries database, users can analyze trends in temperature, humidity, or other environmental factors. The ability to query historical sensor data efficiently will aid in predictive maintenance and help in resource management.
-
Financial Market Data Aggregation: Employ this plugin to track and store time-sensitive financial data from various sources. By sending metrics to Redis, financial institutions can aggregate and analyze market trends or price changes over time, providing them with actionable insights derived from reliable time series analytics.
-
Application Performance Monitoring (APM): Implement the Redis plugin for gathering application performance metrics such as response times and CPU usage. Users can visualize their application’s performance over time with RedisTimeSeries, allowing them to identify bottlenecks and optimize resource allocation swiftly.
-
Energy Consumption Tracking: Leverage this plugin to monitor energy usage in buildings over time. By integrating with smart meters and sending data to RedisTimeSeries, municipalities or enterprises can analyze energy consumption patterns, helping to implement energy-saving measures and sustainability practices.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration