Mesos and PostgreSQL Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Mesos and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This input plugin gathers metrics from Mesos.

The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.

Integration details

Mesos

The Mesos plugin for Telegraf is designed to collect and report metrics from Apache Mesos clusters, which is essential for monitoring and observability in container orchestration and resource management. Mesos, known for its scalability and ability to manage diverse workloads, generates various metrics about resource usage, tasks, frameworks, and overall system performance. By utilizing this plugin, users can track the health and efficiency of their Mesos clusters, gather insights into resource distribution, and ensure that applications receive the necessary resources in a timely manner. The configuration allows users to specify the relevant Mesos master’s details, along with the desired metric groups to collect, making it adaptable to different deployments and monitoring needs. Overall, this plugin integrates seamlessly within the Telegraf collection pipeline, supporting detailed observability for cloud-native environments.

PostgreSQL

The PostgreSQL plugin enables users to write metrics to a PostgreSQL database or a compatible database, providing robust support for schema management by automatically updating missing columns. The plugin is designed to facilitate integration with monitoring solutions, allowing users to efficiently store and manage time series data. It offers configurable options for connection settings, concurrency, and error handling, and supports advanced features such as JSONB storage for tags and fields, foreign key tagging, templated schema modifications, and support for unsigned integer data types through the pguint extension.

Configuration

Mesos

[[inputs.mesos]]
  ## Timeout, in ms.
  timeout = 100

  ## A list of Mesos masters.
  masters = ["http://localhost:5050"]

  ## Master metrics groups to be collected, by default, all enabled.
  master_collections = [
    "resources",
    "master",
    "system",
    "agents",
    "frameworks",
    "framework_offers",
    "tasks",
    "messages",
    "evqueue",
    "registrar",
    "allocator",
  ]

  ## A list of Mesos slaves, default is []
  # slaves = []

  ## Slave metrics groups to be collected, by default, all enabled.
  # slave_collections = [
  #   "resources",
  #   "agent",
  #   "system",
  #   "executors",
  #   "tasks",
  #   "messages",
  # ]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

PostgreSQL

# Publishes metrics to a postgresql database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://www.postgresql.org/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
  ## containing fields for which there is no column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
  ## unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
  ## controls the maximum backoff duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
  ## This is an optimization to skip inserting known tag IDs.
  ## Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

Input and output integration examples

Mesos

  1. Resource Utilization Monitoring: Use the Mesos plugin to continually monitor CPU, memory, and disk usage across your Mesos cluster. For a rapidly scaling application, tracking these metrics helps ensure that resources are dynamically allocated according to workloads, preventing bottlenecks and optimizing performance.

  2. Framework Performance Analysis: Integrate this plugin to measure the performance of different frameworks running on Mesos. By comparing active frameworks and their task success rates, you can identify which frameworks provide the best resource efficiency or may require optimization.

  3. Alerts for System Health: Set up alerts based on metrics collected by the Mesos plugin to notify engineering teams when resource utilization exceeds key thresholds or when specific tasks fail. This allows for proactive intervention and maintenance before critical failures occur.

  4. Capacity Planning: Utilize gathered metrics to analyze historical resource usage patterns to assist in capacity planning. By understanding peak loads and resource utilization trends, teams can make informed decisions on scaling infrastructure and deploying additional resources as needed.

PostgreSQL

  1. Real-Time Analytics with Complex Queries: Leverage the PostgreSQL plugin to store metrics from various sources in a PostgreSQL database, enabling real-time analytics using complex queries. This setup can help data scientists and analysts uncover patterns and trends, as they manipulate relational data across multiple tables while utilizing PostgreSQL’s robust query optimization features. Specifically, users can create sophisticated reports with JOIN operations across different metric tables, revealing insights that would typically remain hidden in embedded systems.

  2. Integrating with TimescaleDB for Time-Series Data: Utilize the PostgreSQL plugin within a TimescaleDB instance to efficiently handle and analyze time-series data. By implementing hypertables, users can achieve greater performance and partitioning of topics over the time dimension. This integration allows users to run analytical queries over large amounts of time-series data while retaining the full power of PostgreSQL’s SQL queries, ensuring reliability and efficiency in metrics analysis.

  3. Data Versioning and Historical Analysis: Implement a strategy using the PostgreSQL plugin to maintain different versions of metrics over time. Users can set up an immutable data table structure where older versions of tables are retained, enabling easy historical analysis. This approach not only provides insights into data evolution but also aids compliance with data retention policies, ensuring that the historical integrity of the datasets remains intact.

  4. Dynamic Schema Management for Evolving Metrics: Use the plugin’s templating capabilities to create a dynamically changing schema that responds to metric variations. This use case allows organizations to adapt their data structure as metrics evolve, adding necessary fields and ensuring adherence to data integrity policies. By leveraging templated SQL commands, users can extend their database without manual intervention, facilitating agile data management practices.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration