Mesos and Cortex Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This input plugin gathers metrics from Mesos.
This plugin enables Telegraf to send metrics to Cortex using the Prometheus remote write protocol, allowing seamless ingestion into Cortex’s scalable, multi-tenant time series storage.
Integration details
Mesos
The Mesos plugin for Telegraf is designed to collect and report metrics from Apache Mesos clusters, which is essential for monitoring and observability in container orchestration and resource management. Mesos, known for its scalability and ability to manage diverse workloads, generates various metrics about resource usage, tasks, frameworks, and overall system performance. By utilizing this plugin, users can track the health and efficiency of their Mesos clusters, gather insights into resource distribution, and ensure that applications receive the necessary resources in a timely manner. The configuration allows users to specify the relevant Mesos master’s details, along with the desired metric groups to collect, making it adaptable to different deployments and monitoring needs. Overall, this plugin integrates seamlessly within the Telegraf collection pipeline, supporting detailed observability for cloud-native environments.
Cortex
With Telegraf’s HTTP output plugin and the prometheusremotewrite
data format you can send metrics directly to Cortex, a horizontally scalable, long-term storage backend for Prometheus. Cortex supports multi-tenancy and accepts remote write requests using the Prometheus protobuf format. By using Telegraf as the collection agent and Remote Write as the transport mechanism, organizations can extend observability into sources not natively supported by Prometheus—such as Windows hosts, SNMP-enabled devices, or custom application metrics—while leveraging Cortex’s high-availability and long-retention capabilities.
Configuration
Mesos
[[inputs.mesos]]
## Timeout, in ms.
timeout = 100
## A list of Mesos masters.
masters = ["http://localhost:5050"]
## Master metrics groups to be collected, by default, all enabled.
master_collections = [
"resources",
"master",
"system",
"agents",
"frameworks",
"framework_offers",
"tasks",
"messages",
"evqueue",
"registrar",
"allocator",
]
## A list of Mesos slaves, default is []
# slaves = []
## Slave metrics groups to be collected, by default, all enabled.
# slave_collections = [
# "resources",
# "agent",
# "system",
# "executors",
# "tasks",
# "messages",
# ]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Cortex
[[outputs.http]]
## Cortex Remote Write endpoint
url = "http://cortex.example.com/api/v1/push"
## Use POST to send data
method = "POST"
## Send metrics using Prometheus remote write format
data_format = "prometheusremotewrite"
## Optional HTTP headers for authentication
# [outputs.http.headers]
# X-Scope-OrgID = "your-tenant-id"
# Authorization = "Bearer YOUR_API_TOKEN"
## Optional TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
## Request timeout
timeout = "10s"
Input and output integration examples
Mesos
-
Resource Utilization Monitoring: Use the Mesos plugin to continually monitor CPU, memory, and disk usage across your Mesos cluster. For a rapidly scaling application, tracking these metrics helps ensure that resources are dynamically allocated according to workloads, preventing bottlenecks and optimizing performance.
-
Framework Performance Analysis: Integrate this plugin to measure the performance of different frameworks running on Mesos. By comparing active frameworks and their task success rates, you can identify which frameworks provide the best resource efficiency or may require optimization.
-
Alerts for System Health: Set up alerts based on metrics collected by the Mesos plugin to notify engineering teams when resource utilization exceeds key thresholds or when specific tasks fail. This allows for proactive intervention and maintenance before critical failures occur.
-
Capacity Planning: Utilize gathered metrics to analyze historical resource usage patterns to assist in capacity planning. By understanding peak loads and resource utilization trends, teams can make informed decisions on scaling infrastructure and deploying additional resources as needed.
Cortex
-
Unified Multi-Tenant Monitoring: Use Telegraf to collect metrics from different teams or environments and push them to Cortex with separate
X-Scope-OrgID
headers. This enables isolated data ingestion and querying per tenant, ideal for managed services and platform teams. -
Extending Prometheus Coverage to Edge Devices: Deploy Telegraf on edge or IoT devices to collect system metrics and send them to a centralized Cortex cluster. This approach ensures consistent observability even for environments without local Prometheus scrapers.
-
Global Service Observability with Federated Tenants: Aggregate metrics from global infrastructure by configuring Telegraf agents to push data into regional Cortex clusters, each tagged with tenant identifiers. Cortex handles deduplication and centralized access across regions.
-
Custom App Telemetry Pipeline: Collect app-specific telemetry via Telegraf’s
exec
orhttp
input plugins and forward it to Cortex. This allows DevOps teams to monitor app-specific KPIs in a scalable, query-efficient format while keeping metrics logically grouped by tenant or service.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration