Memcached and Thanos Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Memcached and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers statistics data from a Memcached server.

This plugin sends metrics from Telegraf to Thanos using the Prometheus remote write protocol over HTTP, allowing efficient and scalable ingestion into Thanos Receive components.

Integration details

Memcached

The Telegraf Memcached plugin is designed to gather statistics data from Memcached servers, allowing users to monitor the performance and health of their caching layer. Memcached, a distributed memory caching system, is commonly used for speeding up dynamic web applications by alleviating database load and storing frequently accessed data in memory for quick retrieval. This plugin collects various metrics such as the number of connections, bytes used, and hits/misses, enabling administrators to analyze cache performance, troubleshoot issues, and optimize resource allocation. The configuration supports multiple Memcached server addresses and offers optional TLS settings, ensuring flexibility and secure data transmission across the network. By leveraging this plugin, organizations can gain insights into their caching strategies and improve application responsiveness and efficiency.

Thanos

Telegraf’s HTTP plugin can send metrics directly to Thanos via its Remote Write-compatible Receive component. By setting the data format to prometheusremotewrite, Telegraf can serialize metrics into the same protobuf-based format used by native Prometheus clients. This setup enables high-throughput, low-latency metric ingestion into Thanos, facilitating centralized observability at scale. It is particularly useful in hybrid environments where Telegraf is collecting metrics from systems outside Prometheus’ native reach, such as SNMP devices, Windows hosts, or custom apps, and streams them directly to Thanos for long-term storage and global querying.

Configuration

Memcached

[[inputs.memcached]]
  # An array of address to gather stats about. Specify an ip on hostname
  # with optional port. ie localhost, 10.0.0.1:11211, etc.
  servers = ["localhost:11211"]
  # An array of unix memcached sockets to gather stats about.
  # unix_sockets = ["/var/run/memcached.sock"]

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

Thanos

[[outputs.http]]
  ## Thanos Receive endpoint for remote write
  url = "http://thanos-receive.example.com/api/v1/receive"

  ## HTTP method
  method = "POST"

  ## Data format set to Prometheus remote write
  data_format = "prometheusremotewrite"

  ## Optional headers (authorization, etc.)
  # [outputs.http.headers]
  #   Authorization = "Bearer YOUR_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

Input and output integration examples

Memcached

  1. Dynamic Cache Performance Monitoring: Use the Memcached plugin to set up a performance monitoring dashboard that displays real-time statistics about cache hit ratios, connection counts, and memory usage. This setup can help developers and system admins quickly identify performance bottlenecks and optimize caching strategies to improve application speed.

  2. Alerting on Cache Performance Metrics: Implement an alerting system that triggers notifications whenever certain thresholds are breached, such as a decrease in cache hit rates or an increase in rejected connections. This proactive approach can help teams respond to potential issues before they affect user experience and maintain optimal application performance.

  3. Integrating Cache Metrics with Business Analytics: Combine Memcached metrics with business intelligence tools to analyze the impact of caching on user engagement and transaction volumes. By correlating cache performance with key business metrics, teams can derive insights into how caching strategies contribute to overall business objectives and improve decision-making processes.

Thanos

  1. Agentless Cloud Monitoring: Deploy Telegraf agents across cloud VMs to collect system and application metrics, then stream them directly into Thanos using Remote Write. This provides centralized observability without requiring Prometheus nodes at each location.

  2. Scalable Windows Host Monitoring: Use Telegraf on Windows machines to collect OS-level metrics and send them via Remote Write to Thanos Receive. This enables observability across heterogeneous environments with native Prometheus support only on Linux.

  3. Cross-Region Metrics Federation: Telegraf agents in multiple geographic regions can push data to region-local Thanos Receivers using this plugin. From there, Thanos can deduplicate and query metrics globally, reducing latency and network egress costs.

  4. Integrating Third-Party Data into Thanos: Collect metrics from custom telemetry sources such as REST APIs or proprietary logs using Telegraf inputs and forward them to Thanos via Remote Write. This brings non-native data into a Prometheus-compatible, long-term analytics pipeline.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration