Memcached and Prometheus Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Memcached and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers statistics data from a Memcached server.

The Prometheus Output Plugin enables Telegraf to expose metrics at an HTTP endpoint for scraping by a Prometheus server. This integration allows users to collect and aggregate metrics from various sources in a format that Prometheus can process efficiently.

Integration details

Memcached

The Telegraf Memcached plugin is designed to gather statistics data from Memcached servers, allowing users to monitor the performance and health of their caching layer. Memcached, a distributed memory caching system, is commonly used for speeding up dynamic web applications by alleviating database load and storing frequently accessed data in memory for quick retrieval. This plugin collects various metrics such as the number of connections, bytes used, and hits/misses, enabling administrators to analyze cache performance, troubleshoot issues, and optimize resource allocation. The configuration supports multiple Memcached server addresses and offers optional TLS settings, ensuring flexibility and secure data transmission across the network. By leveraging this plugin, organizations can gain insights into their caching strategies and improve application responsiveness and efficiency.

Prometheus

This plugin for facilitates the integration with Prometheus, a well-known open-source monitoring and alerting toolkit designed for reliability and efficiency in large-scale environments. By working as a Prometheus client, it allows users to expose a defined set of metrics via an HTTP server that Prometheus can scrape at specified intervals. This plugin plays a crucial role in monitoring diverse systems by allowing them to publish performance metrics in a standardized format, enabling extensive visibility into system health and behavior. Key features include support for configuring various endpoints, enabling TLS for secure communication, and options for HTTP basic authentication. The plugin also integrates seamlessly with global Telegraf configuration settings, supporting extensive customization to fit specific monitoring needs. This promotes interoperability in environments where different systems must communicate performance data effectively. Leveraging Prometheus’s metric format, it allows for flexible metric management through advanced configurations such as metric expiration and collectors control, offering a sophisticated solution for monitoring and alerting workflows.

Configuration

Memcached

[[inputs.memcached]]
  # An array of address to gather stats about. Specify an ip on hostname
  # with optional port. ie localhost, 10.0.0.1:11211, etc.
  servers = ["localhost:11211"]
  # An array of unix memcached sockets to gather stats about.
  # unix_sockets = ["/var/run/memcached.sock"]

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

Prometheus

[[outputs.prometheus_client]]
  ## Address to listen on.
  ##   ex:
  ##     listen = ":9273"
  ##     listen = "vsock://:9273"
  listen = ":9273"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  ## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
  ## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
  ## Valid options: 1, 2
  # metric_version = 1

  ## Use HTTP Basic Authentication.
  # basic_username = "Foo"
  # basic_password = "Bar"

  ## If set, the IP Ranges which are allowed to access metrics.
  ##   ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
  # ip_range = []

  ## Path to publish the metrics on.
  # path = "/metrics"

  ## Expiration interval for each metric. 0 == no expiration
  # expiration_interval = "60s"

  ## Collectors to enable, valid entries are "gocollector" and "process".
  ## If unset, both are enabled.
  # collectors_exclude = ["gocollector", "process"]

  ## Send string metrics as Prometheus labels.
  ## Unless set to false all string metrics will be sent as labels.
  # string_as_label = true

  ## If set, enable TLS with the given certificate.
  # tls_cert = "/etc/ssl/telegraf.crt"
  # tls_key = "/etc/ssl/telegraf.key"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Export metric collection time.
  # export_timestamp = false

  ## Specify the metric type explicitly.
  ## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
  # [outputs.prometheus_client.metric_types]
  #   counter = []
  #   gauge = []

Input and output integration examples

Memcached

  1. Dynamic Cache Performance Monitoring: Use the Memcached plugin to set up a performance monitoring dashboard that displays real-time statistics about cache hit ratios, connection counts, and memory usage. This setup can help developers and system admins quickly identify performance bottlenecks and optimize caching strategies to improve application speed.

  2. Alerting on Cache Performance Metrics: Implement an alerting system that triggers notifications whenever certain thresholds are breached, such as a decrease in cache hit rates or an increase in rejected connections. This proactive approach can help teams respond to potential issues before they affect user experience and maintain optimal application performance.

  3. Integrating Cache Metrics with Business Analytics: Combine Memcached metrics with business intelligence tools to analyze the impact of caching on user engagement and transaction volumes. By correlating cache performance with key business metrics, teams can derive insights into how caching strategies contribute to overall business objectives and improve decision-making processes.

Prometheus

  1. Monitoring Multi-cloud Deployments: Utilize the Prometheus plugin to collect metrics from applications running across multiple cloud providers. This scenario allows teams to centralize monitoring through a single Prometheus instance that scrapes metrics from different environments, providing a unified view of performance metrics across hybrid infrastructures. It streamlines reporting and alerting, enhancing operational efficiency without needing complex integrations.

  2. Enhancing Microservices Visibility: Implement the plugin to expose metrics from various microservices within a Kubernetes cluster. Using Prometheus, teams can visualize service metrics in real time, identify bottlenecks, and maintain system health checks. This setup supports adaptive scaling and resource utilization optimization based on insights generated from the collected metrics. It enhances the ability to troubleshoot service interactions, significantly improving the resilience of the microservice architecture.

  3. Real-time Anomaly Detection in E-commerce: By leveraging this plugin alongside Prometheus, an e-commerce platform can monitor key performance indicators such as response times and error rates. Integrating anomaly detection algorithms with scraped metrics allows the identification of unexpected patterns indicating potential issues, such as sudden traffic spikes or backend service failure. This proactive monitoring empowers business continuity and operational efficiency, minimizing potential downtimes while ensuring service reliability.

  4. Performance Metrics Reporting for APIs: Utilize the Prometheus Output Plugin to gather and report API performance metrics, which can then be visualized in Grafana dashboards. This use case enables detailed analysis of API response times, throughput, and error rates, promoting continuous improvement of API services. By closely monitoring these metrics, teams can quickly react to degradation, ensuring optimal API performance and maintaining a high level of service availability.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration