LDAP and Clickhouse Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The LDAP plugin collects monitoring metrics from LDAP servers, including OpenLDAP and 389 Directory Server. This plugin is essential for tracking the performance and health of LDAP services, enabling administrators to gain insights into their directory operations.
Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.
Integration details
LDAP
This plugin gathers metrics from LDAP servers’ monitoring backend, specifically from the cn=Monitor
entries. It supports two prominent LDAP implementations: OpenLDAP and 389 Directory Server (389ds). With a focus on collecting various operational metrics, the LDAP plugin enables administrators to monitor performance, connection status, and server health in real-time, which is vital for maintaining robust directory services. By allowing customizable connection parameters and security configurations, such as TLS support, the plugin ensures compliance with best practices for security and performance. Metrics gathered can be instrumental in identifying trends, optimizing server configurations, and enforcing service-level agreements with stakeholders.
Clickhouse
Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.
Configuration
LDAP
[[inputs.ldap]]
## Server to monitor
## The scheme determines the mode to use for connection with
## ldap://... -- unencrypted (non-TLS) connection
## ldaps://... -- TLS connection
## starttls://... -- StartTLS connection
## If no port is given, the default ports, 389 for ldap and starttls and
## 636 for ldaps, are used.
server = "ldap://localhost"
## Server dialect, can be "openldap" or "389ds"
# dialect = "openldap"
# DN and password to bind with
## If bind_dn is empty an anonymous bind is performed.
bind_dn = ""
bind_password = ""
## Reverse the field names constructed from the monitoring DN
# reverse_field_names = false
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Password for the key file if it is encrypted
# tls_key_pwd = ""
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## List of ciphers to accept, by default all secure ciphers will be accepted
## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
## Use "all", "secure" and "insecure" to add all support ciphers, secure
## suites or insecure suites respectively.
# tls_cipher_suites = ["secure"]
## Renegotiation method, "never", "once" or "freely"
# tls_renegotiation_method = "never"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Clickhouse
[[outputs.sql]]
## Database driver
## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
driver = "clickhouse"
## Data source name
## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
## Example DSN: "tcp://localhost:9000?debug=true"
data_source_name = "tcp://localhost:9000?debug=true"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion for ClickHouse.
## The conversion maps Telegraf metric types to ClickHouse native data types.
[outputs.sql.convert]
conversion_style = "literal"
integer = "Int64"
text = "String"
timestamp = "DateTime"
defaultvalue = "String"
unsigned = "UInt64"
bool = "UInt8"
real = "Float64"
Input and output integration examples
LDAP
-
Monitoring Directory Performance: Use the LDAP Telegraf plugin to continuously track and analyze the number of operations completed, initiated connections, and server response times. By visualizing this data over time, administrators can identify performance bottlenecks in directory services, enabling proactive optimization.
-
Alerting on Security Events: Integrate the plugin with an alerting system to notify administrators when certain metrics, such as
bind_security_errors
orunauth_binds
, exceed predefined thresholds. This setup can enhance security monitoring by providing real-time insights into potential unauthorized access attempts. -
Capacity Planning: Leverage the metrics collected by the LDAP plugin to perform capacity planning. Analyze connection trends, maximum threads in use, and operational statistics to forecast future resource needs, ensuring the LDAP server can handle expected peak loads without degrading performance.
-
Compliance and Auditing: Use the operational metrics obtained via this plugin to assist in compliance audits. By regularly checking metrics like
anonymous_binds
andsecurity_errors
, organizations can ensure that their directory services adhere to security policies and regulatory requirements.
Clickhouse
-
Real-Time Analytics for High-Volume Data: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.
-
Time-Series Data Warehousing: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.
-
Scalable Monitoring in Distributed Environments: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.
-
Optimized Storage for IoT Deployments: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration