Kubernetes and SQLite Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin captures metrics for Kubernetes pods and containers by communicating with the Kubelet API.
Telegraf’s SQL output plugin stores metrics in an SQL database by creating tables dynamically for each metric type. When configured for SQLite, it utilizes a file-based DSN and a minimal SQL schema tailored for lightweight, embedded database usage.
Integration details
Kubernetes
The Kubernetes input plugin interfaces with the Kubelet API to gather metrics for running pods and containers on a single host, ideally as part of a daemonset in a Kubernetes installation. By operating on each node within the cluster, it collects metrics from the locally running kubelet, ensuring that the data reflects the real-time state of the environment. Being a rapidly evolving project, Kubernetes sees frequent updates, and this plugin adheres to the major cloud providers’ supported versions, maintaining compatibility across multiple releases within a limited time span. Significant consideration is given to the potential high series cardinality, which can burden the database; thus, users are advised to implement filtering techniques and retention policies to manage this load effectively. Configuration options provide flexible customization of the plugin’s behavior to integrate seamlessly into different setups, enhancing its utility in monitoring Kubernetes environments.
SQLite
The SQL output plugin writes Telegraf metrics to an SQL database using a dynamic schema where each metric type corresponds to a table. For SQLite, the plugin uses the modernc.org/sqlite driver and requires a DSN in the format of a file URI (e.g., ‘file:/path/to/telegraf.db?cache=shared’). This configuration leverages standard ANSI SQL for table creation and data insertion, ensuring compatibility with SQLite’s capabilities.
Configuration
Kubernetes
[[inputs.kubernetes]]
## URL for the kubelet, if empty read metrics from all nodes in the cluster
url = "http://127.0.0.1:10255"
## Use bearer token for authorization. ('bearer_token' takes priority)
## If both of these are empty, we'll use the default serviceaccount:
## at: /var/run/secrets/kubernetes.io/serviceaccount/token
##
## To re-read the token at each interval, please use a file with the
## bearer_token option. If given a string, Telegraf will always use that
## token.
# bearer_token = "/var/run/secrets/kubernetes.io/serviceaccount/token"
## OR
# bearer_token_string = "abc_123"
## Kubernetes Node Metric Name
## The default Kubernetes node metric name (i.e. kubernetes_node) is the same
## for the kubernetes and kube_inventory plugins. To avoid conflicts, set this
## option to a different value.
# node_metric_name = "kubernetes_node"
## Pod labels to be added as tags. An empty array for both include and
## exclude will include all labels.
# label_include = []
# label_exclude = ["*"]
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
SQLite
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "sqlite"
## Data source name
## For SQLite, the DSN is a filename or URL with the scheme "file:".
## Example: "file:/path/to/telegraf.db?cache=shared"
data_source_name = "file:/path/to/telegraf.db?cache=shared"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Kubernetes
-
Dynamic Resource Allocation Monitoring: By utilizing the Kubernetes plugin, teams can set up alerts for resource usage patterns across various pods and containers. This proactive monitoring approach enables automatic scaling of resources in response to specific thresholds—helping to optimize performance while minimizing costs during peak usage.
-
Multi-tenancy Resource Isolation Analysis: Organizations using Kubernetes can leverage this plugin to track resource consumption per namespace. In a multi-tenant scenario, understanding the resource allocations and usages across different teams becomes critical for ensuring fair access and performance guarantees, leading to better resource management strategies.
-
Real-time Health Dashboards: Integrate the data captured by the Kubernetes plugin into visualization tools like Grafana to create real-time dashboards. These dashboards provide insights into the overall health and performance of the Kubernetes environment, allowing teams to quickly identify and rectify issues across clusters, pods, and containers.
-
Automated Incident Response Workflows: By combining the Kubernetes plugin with alert management systems, teams can automate incident response procedures based on real-time metrics. If a pod’s resource usage exceeds predefined limits, an automated workflow can trigger remediation actions, such as restarting the pod or reallocating resources—all of which can help improve system resilience.
SQLite
- Local Monitoring Storage: Configure the plugin to write metrics to a local SQLite database file. This is ideal for lightweight deployments where setting up a full-scale database server is not required.
- Embedded Applications: Use SQLite as the backend for applications embedded in edge devices, benefiting from its file-based architecture and minimal resource requirements.
- Quick Setup for Testing: Leverage SQLite’s ease of use to quickly set up a testing environment for Telegraf metrics collection without the need for external database services.
- Custom Schema Management: Adjust the table creation templates to predefine your schema if you require specific column types or indexes, ensuring compatibility with your application’s needs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration