Kubernetes and Microsoft SQL Server Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin captures metrics for Kubernetes pods and containers by communicating with the Kubelet API.
Telegraf’s SQL output plugin facilitates the storage of metrics in SQL databases. When configured for Microsoft SQL Server, it supports the specific DSN format and schema requirements, allowing for seamless integration with SQL Server.
Integration details
Kubernetes
The Kubernetes input plugin interfaces with the Kubelet API to gather metrics for running pods and containers on a single host, ideally as part of a daemonset in a Kubernetes installation. By operating on each node within the cluster, it collects metrics from the locally running kubelet, ensuring that the data reflects the real-time state of the environment. Being a rapidly evolving project, Kubernetes sees frequent updates, and this plugin adheres to the major cloud providers’ supported versions, maintaining compatibility across multiple releases within a limited time span. Significant consideration is given to the potential high series cardinality, which can burden the database; thus, users are advised to implement filtering techniques and retention policies to manage this load effectively. Configuration options provide flexible customization of the plugin’s behavior to integrate seamlessly into different setups, enhancing its utility in monitoring Kubernetes environments.
Microsoft SQL Server
The SQL output plugin enables Telegraf to write metrics to an SQL database using a dynamic table-per-metric schema. For Microsoft SQL Server, it utilizes the go-mssqldb driver with a DSN that follows the sqlserver URL format.
Configuration
Kubernetes
[[inputs.kubernetes]]
## URL for the kubelet, if empty read metrics from all nodes in the cluster
url = "http://127.0.0.1:10255"
## Use bearer token for authorization. ('bearer_token' takes priority)
## If both of these are empty, we'll use the default serviceaccount:
## at: /var/run/secrets/kubernetes.io/serviceaccount/token
##
## To re-read the token at each interval, please use a file with the
## bearer_token option. If given a string, Telegraf will always use that
## token.
# bearer_token = "/var/run/secrets/kubernetes.io/serviceaccount/token"
## OR
# bearer_token_string = "abc_123"
## Kubernetes Node Metric Name
## The default Kubernetes node metric name (i.e. kubernetes_node) is the same
## for the kubernetes and kube_inventory plugins. To avoid conflicts, set this
## option to a different value.
# node_metric_name = "kubernetes_node"
## Pod labels to be added as tags. An empty array for both include and
## exclude will include all labels.
# label_include = []
# label_exclude = ["*"]
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Microsoft SQL Server
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "mssql"
## Data source name
## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## You can customize the mapping if needed.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Kubernetes
-
Dynamic Resource Allocation Monitoring: By utilizing the Kubernetes plugin, teams can set up alerts for resource usage patterns across various pods and containers. This proactive monitoring approach enables automatic scaling of resources in response to specific thresholds—helping to optimize performance while minimizing costs during peak usage.
-
Multi-tenancy Resource Isolation Analysis: Organizations using Kubernetes can leverage this plugin to track resource consumption per namespace. In a multi-tenant scenario, understanding the resource allocations and usages across different teams becomes critical for ensuring fair access and performance guarantees, leading to better resource management strategies.
-
Real-time Health Dashboards: Integrate the data captured by the Kubernetes plugin into visualization tools like Grafana to create real-time dashboards. These dashboards provide insights into the overall health and performance of the Kubernetes environment, allowing teams to quickly identify and rectify issues across clusters, pods, and containers.
-
Automated Incident Response Workflows: By combining the Kubernetes plugin with alert management systems, teams can automate incident response procedures based on real-time metrics. If a pod’s resource usage exceeds predefined limits, an automated workflow can trigger remediation actions, such as restarting the pod or reallocating resources—all of which can help improve system resilience.
Microsoft SQL Server
- Basic MSSQL Setup: Set the driver to ‘mssql’ and configure the DSN with your SQL Server connection details to enable metric storage.
- Custom Schema Management: Adjust the table creation and existence check templates to define a custom schema that meets your organizational standards.
- Initialization SQL: Use the init_sql setting to run any necessary SQL commands to prepare your SQL Server environment before metrics ingestion.
- Connection Tuning: Modify connection pool settings such as connection_max_idle_time and connection_max_open to optimize performance based on your workload.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration