Kubernetes and Loki Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin captures metrics for Kubernetes pods and containers by communicating with the Kubelet API.
The Loki plugin allows users to send logs to Loki for aggregation and querying, leveraging Loki’s efficient storage capabilities.
Integration details
Kubernetes
The Kubernetes input plugin interfaces with the Kubelet API to gather metrics for running pods and containers on a single host, ideally as part of a daemonset in a Kubernetes installation. By operating on each node within the cluster, it collects metrics from the locally running kubelet, ensuring that the data reflects the real-time state of the environment. Being a rapidly evolving project, Kubernetes sees frequent updates, and this plugin adheres to the major cloud providers’ supported versions, maintaining compatibility across multiple releases within a limited time span. Significant consideration is given to the potential high series cardinality, which can burden the database; thus, users are advised to implement filtering techniques and retention policies to manage this load effectively. Configuration options provide flexible customization of the plugin’s behavior to integrate seamlessly into different setups, enhancing its utility in monitoring Kubernetes environments.
Loki
This Loki plugin integrates with Grafana Loki, a powerful log aggregation system. By sending logs in a format compatible with Loki, this plugin allows for efficient storage and querying of logs. Each log entry is structured in a key-value format where keys represent the field names and values represent the corresponding log information. The sorting of logs by timestamp ensures that the log streams maintain chronological order when queried through Loki. This plugin’s support for secrets makes it easier to manage authentication parameters securely, while options for HTTP headers, gzip encoding, and TLS configuration enhance the adaptability and security of log transmission, fitting various deployment needs.
Configuration
Kubernetes
[[inputs.kubernetes]]
## URL for the kubelet, if empty read metrics from all nodes in the cluster
url = "http://127.0.0.1:10255"
## Use bearer token for authorization. ('bearer_token' takes priority)
## If both of these are empty, we'll use the default serviceaccount:
## at: /var/run/secrets/kubernetes.io/serviceaccount/token
##
## To re-read the token at each interval, please use a file with the
## bearer_token option. If given a string, Telegraf will always use that
## token.
# bearer_token = "/var/run/secrets/kubernetes.io/serviceaccount/token"
## OR
# bearer_token_string = "abc_123"
## Kubernetes Node Metric Name
## The default Kubernetes node metric name (i.e. kubernetes_node) is the same
## for the kubernetes and kube_inventory plugins. To avoid conflicts, set this
## option to a different value.
# node_metric_name = "kubernetes_node"
## Pod labels to be added as tags. An empty array for both include and
## exclude will include all labels.
# label_include = []
# label_exclude = ["*"]
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Loki
[[outputs.loki]]
## The domain of Loki
domain = "https://loki.domain.tld"
## Endpoint to write api
# endpoint = "/loki/api/v1/push"
## Connection timeout, defaults to "5s" if not set.
# timeout = "5s"
## Basic auth credential
# username = "loki"
# password = "pass"
## Additional HTTP headers
# http_headers = {"X-Scope-OrgID" = "1"}
## If the request must be gzip encoded
# gzip_request = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Sanitize Tag Names
## If true, all tag names will have invalid characters replaced with
## underscores that do not match the regex: ^[a-zA-Z_:][a-zA-Z0-9_:]*.
# sanitize_label_names = false
## Metric Name Label
## Label to use for the metric name to when sending metrics. If set to an
## empty string, this will not add the label. This is NOT suggested as there
## is no way to differentiate between multiple metrics.
# metric_name_label = "__name"
Input and output integration examples
Kubernetes
-
Dynamic Resource Allocation Monitoring: By utilizing the Kubernetes plugin, teams can set up alerts for resource usage patterns across various pods and containers. This proactive monitoring approach enables automatic scaling of resources in response to specific thresholds—helping to optimize performance while minimizing costs during peak usage.
-
Multi-tenancy Resource Isolation Analysis: Organizations using Kubernetes can leverage this plugin to track resource consumption per namespace. In a multi-tenant scenario, understanding the resource allocations and usages across different teams becomes critical for ensuring fair access and performance guarantees, leading to better resource management strategies.
-
Real-time Health Dashboards: Integrate the data captured by the Kubernetes plugin into visualization tools like Grafana to create real-time dashboards. These dashboards provide insights into the overall health and performance of the Kubernetes environment, allowing teams to quickly identify and rectify issues across clusters, pods, and containers.
-
Automated Incident Response Workflows: By combining the Kubernetes plugin with alert management systems, teams can automate incident response procedures based on real-time metrics. If a pod’s resource usage exceeds predefined limits, an automated workflow can trigger remediation actions, such as restarting the pod or reallocating resources—all of which can help improve system resilience.
Loki
-
Centralized Logging for Microservices: Utilize the Loki plugin to gather logs from multiple microservices running in a Kubernetes cluster. By directing logs to a centralized Loki instance, developers can monitor, search, and analyze logs from all services in one place, facilitating easier troubleshooting and performance monitoring. This setup streamlines operations and supports rapid response to issues across distributed applications.
-
Real-Time Log Anomaly Detection: Combine Loki with monitoring tools to analyze log outputs in real-time for unusual patterns that could indicate system errors or security threats. Implementing anomaly detection on log streams enables teams to proactively identify and respond to incidents, thereby improving system reliability and enhancing security postures.
-
Enhanced Log Processing with Gzip Compression: Configure the Loki plugin to utilize gzip compression for log transmission. This approach can reduce bandwidth usage and improve transmission speeds, especially beneficial in environments where network bandwidth may be a constraint. It’s particularly useful for high-volume logging applications where every byte counts and performance is critical.
-
Multi-Tenancy Support with Custom Headers: Leverage the ability to add custom HTTP headers to segregate logs from different tenants in a multi-tenant application environment. By using the Loki plugin to send different headers for each tenant, operators can ensure proper log management and compliance with data isolation requirements, making it a versatile solution for SaaS applications.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration