Kinesis and Prometheus Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Kinesis and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kinesis plugin enables you to read from Kinesis data streams, supporting various data formats and configurations.

The Prometheus Output Plugin enables Telegraf to expose metrics at an HTTP endpoint for scraping by a Prometheus server. This integration allows users to collect and aggregate metrics from various sources in a format that Prometheus can process efficiently.

Integration details

Kinesis

The Kinesis Telegraf plugin is designed to read from Amazon Kinesis data streams, enabling users to gather metrics in real-time. As a service input plugin, it operates by listening for incoming data rather than polling at regular intervals. The configuration specifies various options including the AWS region, stream name, authentication credentials, and data formats. It supports tracking of undelivered messages to prevent data loss, and users can utilize DynamoDB for maintaining checkpoints of the last processed records. This plugin is particularly useful for applications requiring reliable and scalable stream processing alongside other monitoring needs.

Prometheus

This plugin for facilitates the integration with Prometheus, a well-known open-source monitoring and alerting toolkit designed for reliability and efficiency in large-scale environments. By working as a Prometheus client, it allows users to expose a defined set of metrics via an HTTP server that Prometheus can scrape at specified intervals. This plugin plays a crucial role in monitoring diverse systems by allowing them to publish performance metrics in a standardized format, enabling extensive visibility into system health and behavior. Key features include support for configuring various endpoints, enabling TLS for secure communication, and options for HTTP basic authentication. The plugin also integrates seamlessly with global Telegraf configuration settings, supporting extensive customization to fit specific monitoring needs. This promotes interoperability in environments where different systems must communicate performance data effectively. Leveraging Prometheus’s metric format, it allows for flexible metric management through advanced configurations such as metric expiration and collectors control, offering a sophisticated solution for monitoring and alerting workflows.

Configuration

Kinesis


# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
  ## Amazon REGION of kinesis endpoint.
  region = "ap-southeast-2"

  ## Amazon Credentials
  ## Credentials are loaded in the following order
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Kinesis StreamName must exist prior to starting telegraf.
  streamname = "StreamName"

  ## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
  # shard_iterator_type = "TRIM_HORIZON"

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ##
  ## The content encoding of the data from kinesis
  ## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
  ## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
  ## also base64 encodes the zip byte data before pushing to the stream.  The base64 decoding
  ## is done automatically by the golang sdk, as data is read from kinesis)
  ##
  # content_encoding = "identity"

  ## Optional
  ## Configuration for a dynamodb checkpoint
  [inputs.kinesis_consumer.checkpoint_dynamodb]
    ## unique name for this consumer
    app_name = "default"
    table_name = "default"

Prometheus

[[outputs.prometheus_client]]
  ## Address to listen on.
  ##   ex:
  ##     listen = ":9273"
  ##     listen = "vsock://:9273"
  listen = ":9273"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  ## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
  ## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
  ## Valid options: 1, 2
  # metric_version = 1

  ## Use HTTP Basic Authentication.
  # basic_username = "Foo"
  # basic_password = "Bar"

  ## If set, the IP Ranges which are allowed to access metrics.
  ##   ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
  # ip_range = []

  ## Path to publish the metrics on.
  # path = "/metrics"

  ## Expiration interval for each metric. 0 == no expiration
  # expiration_interval = "60s"

  ## Collectors to enable, valid entries are "gocollector" and "process".
  ## If unset, both are enabled.
  # collectors_exclude = ["gocollector", "process"]

  ## Send string metrics as Prometheus labels.
  ## Unless set to false all string metrics will be sent as labels.
  # string_as_label = true

  ## If set, enable TLS with the given certificate.
  # tls_cert = "/etc/ssl/telegraf.crt"
  # tls_key = "/etc/ssl/telegraf.key"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Export metric collection time.
  # export_timestamp = false

  ## Specify the metric type explicitly.
  ## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
  # [outputs.prometheus_client.metric_types]
  #   counter = []
  #   gauge = []

Input and output integration examples

Kinesis

  1. Real-Time Data Processing with Kinesis: This use case involves integrating the Kinesis plugin with a monitoring dashboard to analyze incoming data metrics in real-time. For instance, an application could consume logs from multiple services and present them visually, allowing operations teams to quickly identify trends and react to anomalies as they occur.

  2. Serverless Log Aggregation: Utilize this plugin in a serverless architecture where Kinesis streams aggregate logs from various microservices. The plugin can create metrics that help detect issues in the system, automating alerting processes through third-party integrations, enabling teams to minimize downtime and improve reliability.

  3. Dynamic Scaling Based on Stream Metrics: Implement a solution where stream metrics consumed by the Kinesis plugin could be used to adjust resources dynamically. For example, if the number of records processed spikes, corresponding scale-up actions could be triggered to handle the increased load, ensuring optimal resource allocation and performance.

  4. Data Pipeline to S3 with Checkpointing: Create a robust data pipeline where Kinesis stream data is processed through the Telegraf Kinesis plugin, with checkpoints stored in DynamoDB. This approach can ensure data consistency and reliability, as it manages the state of processed data, enabling seamless integration with downstream data lakes or storage solutions.

Prometheus

  1. Monitoring Multi-cloud Deployments: Utilize the Prometheus plugin to collect metrics from applications running across multiple cloud providers. This scenario allows teams to centralize monitoring through a single Prometheus instance that scrapes metrics from different environments, providing a unified view of performance metrics across hybrid infrastructures. It streamlines reporting and alerting, enhancing operational efficiency without needing complex integrations.

  2. Enhancing Microservices Visibility: Implement the plugin to expose metrics from various microservices within a Kubernetes cluster. Using Prometheus, teams can visualize service metrics in real time, identify bottlenecks, and maintain system health checks. This setup supports adaptive scaling and resource utilization optimization based on insights generated from the collected metrics. It enhances the ability to troubleshoot service interactions, significantly improving the resilience of the microservice architecture.

  3. Real-time Anomaly Detection in E-commerce: By leveraging this plugin alongside Prometheus, an e-commerce platform can monitor key performance indicators such as response times and error rates. Integrating anomaly detection algorithms with scraped metrics allows the identification of unexpected patterns indicating potential issues, such as sudden traffic spikes or backend service failure. This proactive monitoring empowers business continuity and operational efficiency, minimizing potential downtimes while ensuring service reliability.

  4. Performance Metrics Reporting for APIs: Utilize the Prometheus Output Plugin to gather and report API performance metrics, which can then be visualized in Grafana dashboards. This use case enables detailed analysis of API response times, throughput, and error rates, promoting continuous improvement of API services. By closely monitoring these metrics, teams can quickly react to degradation, ensuring optimal API performance and maintaining a high level of service availability.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration