Kinesis and OpenTSDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Kinesis plugin enables you to read from Kinesis data streams, supporting various data formats and configurations.
The OpenTSDB plugin facilitates the integration of Telegraf with OpenTSDB, allowing users to push time-series metrics to an OpenTSDB backend seamlessly.
Integration details
Kinesis
The Kinesis Telegraf plugin is designed to read from Amazon Kinesis data streams, enabling users to gather metrics in real-time. As a service input plugin, it operates by listening for incoming data rather than polling at regular intervals. The configuration specifies various options including the AWS region, stream name, authentication credentials, and data formats. It supports tracking of undelivered messages to prevent data loss, and users can utilize DynamoDB for maintaining checkpoints of the last processed records. This plugin is particularly useful for applications requiring reliable and scalable stream processing alongside other monitoring needs.
OpenTSDB
The OpenTSDB plugin is designed to send metrics to an OpenTSDB instance using either the telnet or HTTP mode. With the introduction of OpenTSDB 2.0, the recommended method for sending metrics is via the HTTP API, which allows for batch processing of metrics by configuring the ‘http_batch_size’. The plugin supports several configuration options including metrics prefixing, server host and port specification, URI path customization for reverse proxies, and debug options for diagnosing communication issues with OpenTSDB. This plugin is particularly useful in scenarios where time series data is generated and needs to be efficiently stored in a scalable time series database like OpenTSDB, making it suitable for a wide range of monitoring and analytics applications.
Configuration
Kinesis
# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
## Amazon REGION of kinesis endpoint.
region = "ap-southeast-2"
## Amazon Credentials
## Credentials are loaded in the following order
## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
## 2) Assumed credentials via STS if role_arn is specified
## 3) explicit credentials from 'access_key' and 'secret_key'
## 4) shared profile from 'profile'
## 5) environment variables
## 6) shared credentials file
## 7) EC2 Instance Profile
# access_key = ""
# secret_key = ""
# token = ""
# role_arn = ""
# web_identity_token_file = ""
# role_session_name = ""
# profile = ""
# shared_credential_file = ""
## Endpoint to make request against, the correct endpoint is automatically
## determined and this option should only be set if you wish to override the
## default.
## ex: endpoint_url = "http://localhost:8000"
# endpoint_url = ""
## Kinesis StreamName must exist prior to starting telegraf.
streamname = "StreamName"
## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
# shard_iterator_type = "TRIM_HORIZON"
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
##
## The content encoding of the data from kinesis
## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
## also base64 encodes the zip byte data before pushing to the stream. The base64 decoding
## is done automatically by the golang sdk, as data is read from kinesis)
##
# content_encoding = "identity"
## Optional
## Configuration for a dynamodb checkpoint
[inputs.kinesis_consumer.checkpoint_dynamodb]
## unique name for this consumer
app_name = "default"
table_name = "default"
OpenTSDB
[[outputs.opentsdb]]
## prefix for metrics keys
prefix = "my.specific.prefix."
## DNS name of the OpenTSDB server
## Using "opentsdb.example.com" or "tcp://opentsdb.example.com" will use the
## telnet API. "http://opentsdb.example.com" will use the Http API.
host = "opentsdb.example.com"
## Port of the OpenTSDB server
port = 4242
## Number of data points to send to OpenTSDB in Http requests.
## Not used with telnet API.
http_batch_size = 50
## URI Path for Http requests to OpenTSDB.
## Used in cases where OpenTSDB is located behind a reverse proxy.
http_path = "/api/put"
## Debug true - Prints OpenTSDB communication
debug = false
## Separator separates measurement name from field
separator = "_"
Input and output integration examples
Kinesis
-
Real-Time Data Processing with Kinesis: This use case involves integrating the Kinesis plugin with a monitoring dashboard to analyze incoming data metrics in real-time. For instance, an application could consume logs from multiple services and present them visually, allowing operations teams to quickly identify trends and react to anomalies as they occur.
-
Serverless Log Aggregation: Utilize this plugin in a serverless architecture where Kinesis streams aggregate logs from various microservices. The plugin can create metrics that help detect issues in the system, automating alerting processes through third-party integrations, enabling teams to minimize downtime and improve reliability.
-
Dynamic Scaling Based on Stream Metrics: Implement a solution where stream metrics consumed by the Kinesis plugin could be used to adjust resources dynamically. For example, if the number of records processed spikes, corresponding scale-up actions could be triggered to handle the increased load, ensuring optimal resource allocation and performance.
-
Data Pipeline to S3 with Checkpointing: Create a robust data pipeline where Kinesis stream data is processed through the Telegraf Kinesis plugin, with checkpoints stored in DynamoDB. This approach can ensure data consistency and reliability, as it manages the state of processed data, enabling seamless integration with downstream data lakes or storage solutions.
OpenTSDB
-
Real-time Infrastructure Monitoring: Utilize the OpenTSDB plugin to collect and store metrics from various infrastructure components. By configuring the plugin to push metrics to OpenTSDB, organizations can have a centralized view of their infrastructure health and performance over time.
-
Custom Application Metrics Tracking: Integrate the OpenTSDB plugin into custom applications to track key performance indicators (KPIs) such as response times, error rates, and user interactions. This setup allows developers and product teams to visualize application performance trends and make data-driven decisions.
-
Automated Anomaly Detection: Leverage the plugin in conjunction with machine learning algorithms to automatically detect anomalies in time-series data sent to OpenTSDB. By continuously monitoring the incoming metrics, the system can train models that alert users to potential issues before they affect application performance.
-
Historical Data Analysis: Use the OpenTSDB plugin to store and analyze historical performance data for capacity planning and trend analysis. This provides valuable insights into system behavior over time, helping teams to understand usage patterns and prepare for future growth.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration