Kinesis and Microsoft SQL Server Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Kinesis and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kinesis plugin enables you to read from Kinesis data streams, supporting various data formats and configurations.

Telegraf’s SQL plugin facilitates the storage of metrics in SQL databases. When configured for Microsoft SQL Server, it supports the specific DSN format and schema requirements, allowing for seamless integration with SQL Server.

Integration details

Kinesis

The Kinesis Telegraf plugin is designed to read from Amazon Kinesis data streams, enabling users to gather metrics in real-time. As a service input plugin, it operates by listening for incoming data rather than polling at regular intervals. The configuration specifies various options including the AWS region, stream name, authentication credentials, and data formats. It supports tracking of undelivered messages to prevent data loss, and users can utilize DynamoDB for maintaining checkpoints of the last processed records. This plugin is particularly useful for applications requiring reliable and scalable stream processing alongside other monitoring needs.

Microsoft SQL Server

Telegraf’s SQL output plugin for Microsoft SQL Server is designed to capture and store metric data by dynamically creating tables and columns that match the structure of incoming data. This integration leverages the go-mssqldb driver, which follows the SQL Server connection protocol through a DSN that includes server, port, and database details. Although the driver is considered experimental due to limited unit tests, it provides robust support for dynamic schema generation and data insertion, enabling detailed time-stamped records of system performance. This flexibility makes it a valuable tool for environments that demand reliable and granular metric logging, despite its experimental status.

Configuration

Kinesis


# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
  ## Amazon REGION of kinesis endpoint.
  region = "ap-southeast-2"

  ## Amazon Credentials
  ## Credentials are loaded in the following order
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Kinesis StreamName must exist prior to starting telegraf.
  streamname = "StreamName"

  ## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
  # shard_iterator_type = "TRIM_HORIZON"

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ##
  ## The content encoding of the data from kinesis
  ## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
  ## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
  ## also base64 encodes the zip byte data before pushing to the stream.  The base64 decoding
  ## is done automatically by the golang sdk, as data is read from kinesis)
  ##
  # content_encoding = "identity"

  ## Optional
  ## Configuration for a dynamodb checkpoint
  [inputs.kinesis_consumer.checkpoint_dynamodb]
    ## unique name for this consumer
    app_name = "default"
    table_name = "default"

Microsoft SQL Server

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "mssql"

  ## Data source name
  ## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
  ## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
  data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## You can customize the mapping if needed.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

Input and output integration examples

Kinesis

  1. Real-Time Data Processing with Kinesis: This use case involves integrating the Kinesis plugin with a monitoring dashboard to analyze incoming data metrics in real-time. For instance, an application could consume logs from multiple services and present them visually, allowing operations teams to quickly identify trends and react to anomalies as they occur.

  2. Serverless Log Aggregation: Utilize this plugin in a serverless architecture where Kinesis streams aggregate logs from various microservices. The plugin can create metrics that help detect issues in the system, automating alerting processes through third-party integrations, enabling teams to minimize downtime and improve reliability.

  3. Dynamic Scaling Based on Stream Metrics: Implement a solution where stream metrics consumed by the Kinesis plugin could be used to adjust resources dynamically. For example, if the number of records processed spikes, corresponding scale-up actions could be triggered to handle the increased load, ensuring optimal resource allocation and performance.

  4. Data Pipeline to S3 with Checkpointing: Create a robust data pipeline where Kinesis stream data is processed through the Telegraf Kinesis plugin, with checkpoints stored in DynamoDB. This approach can ensure data consistency and reliability, as it manages the state of processed data, enabling seamless integration with downstream data lakes or storage solutions.

Microsoft SQL Server

  1. Enterprise Application Monitoring: Leverage the plugin to capture detailed performance metrics from enterprise applications running on SQL Server. This setup allows IT teams to analyze system performance, track transaction times, and identify bottlenecks across complex, multi-tier environments.

  2. Dynamic Infrastructure Auditing: Deploy the plugin to create a dynamic audit log of infrastructure changes and performance metrics in SQL Server. This use case is ideal for organizations that require real-time monitoring and historical analysis of system performance for compliance and optimization.

  3. Automated Performance Benchmarking: Use the plugin to continuously record and analyze performance metrics of SQL Server databases. This enables automated benchmarking, where historical data is compared against current performance, helping to quickly identify anomalies or degradation in service.

  4. Integrated DevOps Dashboards: Integrate the plugin with DevOps monitoring tools to feed real-time metrics from SQL Server into centralized dashboards. This provides a holistic view of application health, allowing teams to correlate SQL Server performance with application-level events for faster troubleshooting and proactive maintenance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration